Code for the paper Graph Neural Networks-based Hybrid Framework For Predicting Particle Crushing Strength.
We have generated 45,000 numerical simulations for particle crushing with 900 different particle types in total, the Cartesian product of 20 different particle diameters, 15 different scale shapes in the (X, Y, Z) axes, and 3 different compression axes under one-dimensional compression.
Download data_files
from Google Drive and place the directory in the current folder.
-
conda create -n particle python=3.9 -y
-
conda activate particle
-
pip install -r requirements.txt
. My torch version is torch-1.10.2+cu113. -
Install the dependency of
torch_geoemtric
according to PyG. My PYG version istorch-1.10.2+cu113
, and I recommend to download these dependency packages from PyG-torch.10.2+cu113. -
pip install torch-geometric==2.0.3
-
bash ./init.sh
to create useful directories.
python main_baselines.py --model Linear
python main_baselines.py --model Ridge
python main_baselines.py --model RF
python main_baselines.py --model XGB
python main_baselines.py --model LGB
python main_nn.py --model MLP
python main_nn.py --model MeshNet
python main_nn.py --model GIN
python main_nn.py --model ExpC
- Set the task,
--test-choice diameter | scale | rotation
, refers to the diameter, shape, and axis task in our paper.
@article{zheng2023graph,
title={Graph Neural Networks-based Hybrid Framework For Predicting Particle Crushing Strength},
author={Zheng, Tongya and Zhang, Tianli and Guan, Qingzheng and Huang, Wenjie and Feng, Zunlei and Song, Mingli and Chen, Chun},
journal={arXiv:2307.13909 },
year={2023},
pages={1--43},
publisher={arxiv}
}