Skip to content

Installation instructions for Ubuntu 16.04 with GTX 1070/80 GPU

Notifications You must be signed in to change notification settings

eric496/linux_settings

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 

Repository files navigation

Install ubuntu 16.04, CUDA 8.0 and CUDNN 5.0

  1. install ubuntu 16.04 without GPU

  2. download CUDA 8.0

  3. $sudo apt-get update

  4. shut down and plug in GPU

  5. start and press "esc" to grub2 window

  6. hightlight "Ubuntu" and press "e" to edit: add "nomodeset" after "ro" (with a trailing space) in the "linux" line, then press f10 to start

  7. sudo chvt 1

  8. $sudo service lightdm stop

  9. $sudo bash cuda_8.0.44_linux.run

  10. $sudo service lightdm start

  11. install cuDNN 5.0

    $cd cudnn_foler

    $sudo cp -P include/cudnn.h /usr/include

    $sudo cp -P lib64/libcudnn* /usr/lib/x86_64-linux-gnu/

    $sudo chmod a+r /usr/lib/x86_64-linux-gnu/libcudnn*

  12. add PATH to ~/.bashrc

    $export PATH="/usr/local/cuda-8.0/bin:$PATH"

    $export LD_LIBRARY_PATH="/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH"

    $sudo ldconfig /usr/local/cuda-8.0/lib64

Install Anaconda

$bash Anaconda.sh

Install OpenBLAS

$sudo apt-get install gfortran

$git clone https://github.com/xianyi/OpenBLAS

$cd OpenBLAS

$make FC=gfortran

$sudo make PREFIX=/usr/local install

error: "cannot find -lgfortran"

solution: $sudo ln -s /usr/lib/x86_64-linux-gnu/libgfortran.so.3 /usr/lib/libgfortran.so

Create Conda virtual environment for all machine learning libraries

$conda create -n mlenv python=2.7

$source activate mlenv

Install TensorFlow

(mlenv)$ conda install -c conda-forge tensorflow

Install Theano

  1. $sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev git

  2. $pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

  3. downgrade g++ to 4.9 (5.3 or later version is not compatible)

    $sudo apt-get install g++-4.9

    $sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.9 20

    $sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 10

    $sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.9 20

    $sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-5 10

    $sudo update-alternatives --install /usr/bin/cc cc /usr/bin/gcc 30

    $sudo update-alternatives --set cc /usr/bin/gcc

    $sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/g++ 30

    $sudo update-alternatives --set c++ /usr/bin/g++

  4. work around a glibc bug

    echo -e "\n[nvcc]\nflags=-D_FORCE_INLINES\n" >> ~/.theanorc

  5. add the following to ~/.theanorc

    [global]

        floatX = float32

        device = gpu

    [nvcc]

        flags=-D_FORCE_INLINES

        fastmath = True

    [lib]

        cnmem = 0.9

If we want to use one GPU to train multiple small nets, we need to remove the line cnmem=0.9, otherwise we get a theano error (since 90% of the GPU memory is allocated to the first net)

Install Keras

  1. $git clone https://github.com/fchollet/keras.git

  2. $cd keras; $sudo python setup.py install

Install Torch

  1. $git clone https://github.com/torch/distro.git ~/torch --recursive

  2. $cd ~/torch; bash install-deps;

  3. $ ./install.sh

  4. $source ~/.bashrc

Install iTorch

  1. $luarocks install lzmq

  2. $git clone https://github.com/facebook/iTorch.git

  3. $cd iTorch; luarocks make;

Install Caffe

Refer to this but before 'make all' and 'make test', modify the Makefile.config:

INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/

LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

Install Mxnet

  1. $sudo apt-get update

  2. $sudo apt-get install -y build-essential git libatlas-base-dev libopencv-dev

  3. $git clone --recursive https://github.com/dmlc/mxnet

  4. $vim mxnet/make/config.mk

  5. change these lines:

    ADD_LDFLAGS = -I/usr/local/openblas/lib

    ADD_CFLAGS = -I/usr/local/openblas/include

    USE_CUDA = 1

    USE_CUDNN = 1

    USE_CUDA_PATH = /usr/local/cuda-8.0

    USE_BLAS = openblas

  6. $cd mxnet; make -j4

  7. $cd mxnet/python; python setup.py install

Other libraries

  1. opencv: $conda install -c conda-forge opencv
  2. sklearn update $conda update scikit-learn
  3. seaborn $conda install seaborn

Other settings


Blank screen error

  1. $sudo /usr/bin/
  2. $gnome-terminal
  3. $ccsm
  4. "Enable Unity Desktop" - For any conflict, just disable the settings in "General"

Fish settings

$set fish env var:

$set -U fish_user_paths $fish_user_paths my_path

for example: set -U fisher_user_paths $fish_user_paths ~/anaconda2/bin/

Disable "system program problem detected" dialog

  1. $sudo rm /var/crash/*
  2. $vim /etc/default/apport
  3. change "enable=1" to "enable=0"
  4. $sudo service apport stop
  5. $sudo reboot

Store git credentials

  1. $git config credential.helper store
  2. $git push http://example.com/repo.git
  3. Username:
  4. Password:

Matlab launch failure (halting on the start logo)

  1. $sudo chown username -R ~/.matlab

  2. $sudo apt-get install matlab-support

About

Installation instructions for Ubuntu 16.04 with GTX 1070/80 GPU

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published