Skip to content
/ pykernels Public

Python library for working with kernel methods in machine learning

License

Notifications You must be signed in to change notification settings

gmum/pykernels

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyKernels

  • authors: Wojciech Marian Czarnecki and Katarzyna Janocha
  • version: 0.0.4
  • dependencies: numpy, scipy, scikit-learn

General description

Python library for working with kernel methods in machine learning. Provided code is easy to use set of implementations of various kernel functions ranging from typical linear, polynomial or rbf ones through wawelet, fourier transformations, kernels for binary sequences and even kernels for labeled graphs.

Sample usage

from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
import numpy as np

from pykernels.basic import RBF

X = np.array([[1,1], [0,0], [1,0], [0,1]])
y = np.array([1, 1, 0, 0])

print 'Testing XOR'

for clf, name in [(SVC(kernel=RBF(), C=1000), 'pykernel'), (SVC(kernel='rbf', C=1000), 'sklearn')]:
    clf.fit(X, y)
    print name
    print clf
    print 'Predictions:', clf.predict(X)
    print 'Accuracy:', accuracy_score(clf.predict(X), y)
    print

implemented Kernels

  • Vector kernels for R^d

    • Linear
    • Polynomial
    • RBF
    • Cosine similarity
    • Exponential
    • Laplacian
    • Rational quadratic
    • Inverse multiquadratic
    • Cauchy
    • T-Student
    • ANOVA
    • Additive Chi^2
    • Chi^2
    • MinMax
    • Min/Histogram intersection
    • Generalized histogram intersection
    • Spline
    • Sorensen
    • Tanimoto
    • Wavelet
    • Fourier
    • Log (CPD)
    • Power (CPD)
  • Graph kernels

    • Labeled

      • Shortest paths
    • Unlabeled

      • Shortest paths
      • 3,4-Graphlets
      • Random walk

About

Python library for working with kernel methods in machine learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages