-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.py
257 lines (211 loc) · 8.24 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains common utilities and functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import locale
import os
import re
from absl import logging
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import cv2
gfile = tf.gfile
CMAP_DEFAULT = 'plasma'
# Defines the cropping that is applied to the Cityscapes dataset with respect to
# the original raw input resolution.
CITYSCAPES_CROP = [256, 768, 192, 1856]
def crop_cityscapes(im, resize=None):
ymin, ymax, xmin, xmax = CITYSCAPES_CROP
im = im[ymin:ymax, xmin:xmax]
if resize is not None:
im = cv2.resize(im, resize)
return im
def gray2rgb(im, cmap=CMAP_DEFAULT):
cmap = plt.get_cmap(cmap)
result_img = cmap(im.astype(np.float32))
if result_img.shape[2] > 3:
result_img = np.delete(result_img, 3, 2)
return result_img
def load_image(img_file, resize=None, interpolation='linear'):
"""Load image from disk. Output value range: [0,1]."""
#im_data = np.fromstring(gfile.Open(img_file).read(), np.uint8)
#im = cv2.imdecode(im_data, cv2.IMREAD_COLOR)
im = cv2.imread(img_file)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
if resize and resize != im.shape[:2]:
ip = cv2.INTER_LINEAR if interpolation == 'linear' else cv2.INTER_NEAREST
im = cv2.resize(im, resize, interpolation=ip)
return np.array(im, dtype=np.float32) / 255.0
def save_image(img_file, im, file_extension):
"""Save image from disk. Expected input value range: [0,1]."""
im = (im * 255.0).astype(np.uint8)
with gfile.Open(img_file, 'w') as f:
im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
_, im_data = cv2.imencode('.%s' % file_extension, im)
f.write(im_data.tostring())
def normalize_depth_for_display(depth, pc=95, crop_percent=0, normalizer=None,
cmap=CMAP_DEFAULT):
"""Converts a depth map to an RGB image."""
# Convert to disparity.
disp = 1.0 / (depth + 1e-6)
if normalizer is not None:
disp /= normalizer
else:
disp /= (np.percentile(disp, pc) + 1e-6)
disp = np.clip(disp, 0, 1)
disp = gray2rgb(disp, cmap=cmap)
keep_h = int(disp.shape[0] * (1 - crop_percent))
disp = disp[:keep_h]
return disp
def get_seq_start_end(target_index, seq_length, sample_every=1):
"""Returns absolute seq start and end indices for a given target frame."""
half_offset = int((seq_length - 1) / 2) * sample_every
end_index = target_index + half_offset
start_index = end_index - (seq_length - 1) * sample_every
return start_index, end_index
def get_seq_middle(seq_length):
"""Returns relative index for the middle frame in sequence."""
half_offset = int((seq_length - 1) / 2)
return seq_length - 1 - half_offset
def info(obj):
"""Return info on shape and dtype of a numpy array or TensorFlow tensor."""
if obj is None:
return 'None.'
elif isinstance(obj, list):
if obj:
return 'List of %d... %s' % (len(obj), info(obj[0]))
else:
return 'Empty list.'
elif isinstance(obj, tuple):
if obj:
return 'Tuple of %d... %s' % (len(obj), info(obj[0]))
else:
return 'Empty tuple.'
else:
if is_a_numpy_array(obj):
return 'Array with shape: %s, dtype: %s' % (obj.shape, obj.dtype)
else:
return str(obj)
def is_a_numpy_array(obj):
"""Returns true if obj is a numpy array."""
return type(obj).__module__ == np.__name__
def count_parameters(also_print=True):
"""Cound the number of parameters in the model.
Args:
also_print: Boolean. If True also print the numbers.
Returns:
The total number of parameters.
"""
total = 0
if also_print:
logging.info('Model Parameters:')
for (_, v) in get_vars_to_save_and_restore().items():
shape = v.get_shape()
if also_print:
logging.info('%s %s: %s', v.op.name, shape,
format_number(shape.num_elements()))
total += shape.num_elements()
if also_print:
logging.info('Total: %s', format_number(total))
return total
def get_vars_to_save_and_restore(ckpt=None):
"""Returns list of variables that should be saved/restored.
Args:
ckpt: Path to existing checkpoint. If present, returns only the subset of
variables that exist in given checkpoint.
Returns:
List of all variables that need to be saved/restored.
"""
model_vars = tf.trainable_variables()
# Add batchnorm variables.
bn_vars = [v for v in tf.global_variables()
if 'moving_mean' in v.op.name or 'moving_variance' in v.op.name or
'mu' in v.op.name or 'sigma' in v.op.name or
'global_scale_var' in v.op.name]
model_vars.extend(bn_vars)
model_vars = sorted(model_vars, key=lambda x: x.op.name)
mapping = {}
if ckpt is not None:
ckpt_var = tf.contrib.framework.list_variables(ckpt)
ckpt_var_names = [name for (name, unused_shape) in ckpt_var]
ckpt_var_shapes = [shape for (unused_name, shape) in ckpt_var]
not_loaded = list(ckpt_var_names)
for v in model_vars:
if v.op.name not in ckpt_var_names:
# For backward compatibility, try additional matching.
v_additional_name = v.op.name.replace('egomotion_prediction/', '')
if v_additional_name in ckpt_var_names:
# Check if shapes match.
ind = ckpt_var_names.index(v_additional_name)
if ckpt_var_shapes[ind] == v.get_shape():
mapping[v_additional_name] = v
not_loaded.remove(v_additional_name)
continue
else:
logging.warn('Shape mismatch, will not restore %s.', v.op.name)
logging.warn('Did not find var %s in checkpoint: %s', v.op.name,
os.path.basename(ckpt))
else:
# Check if shapes match.
ind = ckpt_var_names.index(v.op.name)
if ckpt_var_shapes[ind] == v.get_shape():
mapping[v.op.name] = v
not_loaded.remove(v.op.name)
else:
logging.warn('Shape mismatch, will not restore %s.', v.op.name)
if not_loaded:
logging.warn('The following variables in the checkpoint were not loaded:')
for varname_not_loaded in not_loaded:
logging.info('%s', varname_not_loaded)
else: # just get model vars.
for v in model_vars:
mapping[v.op.name] = v
return mapping
def get_imagenet_vars_to_restore(imagenet_ckpt):
"""Returns dict of variables to restore from ImageNet-checkpoint."""
vars_to_restore_imagenet = {}
ckpt_var_names = tf.contrib.framework.list_variables(imagenet_ckpt)
ckpt_var_names = [name for (name, unused_shape) in ckpt_var_names]
model_vars = tf.global_variables()
for v in model_vars:
if 'global_step' in v.op.name: continue
mvname_noprefix = v.op.name.replace('depth_prediction/', '')
mvname_noprefix = mvname_noprefix.replace('moving_mean', 'mu')
mvname_noprefix = mvname_noprefix.replace('moving_variance', 'sigma')
if mvname_noprefix in ckpt_var_names:
vars_to_restore_imagenet[mvname_noprefix] = v
else:
logging.info('The following variable will not be restored from '
'pretrained ImageNet-checkpoint: %s', mvname_noprefix)
return vars_to_restore_imagenet
def format_number(n):
"""Formats number with thousands commas."""
#locale.setlocale(locale.LC_ALL, 'en_US')
#locale.setlocale(locale.LC_ALL, 'en_US')
return locale.format('%d', n, grouping=True)
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
return [atoi(c) for c in re.split(r'(\d+)', text)]
def read_text_lines(filepath):
with tf.gfile.Open(filepath, 'r') as f:
lines = f.readlines()
lines = [l.rstrip() for l in lines]
return lines