This code is modified from "struct2depth" to use and evaluate depth_from_video_in_the_wild.
Abs Rel Error calculation code is from SfM Learner.
nohup python -m depth_from_video_in_the_wild.train \
--data_dir /home/ubuntu/data/kitti_result_all_20200715 \
--checkpoint_dir=/home/ubuntu/data/kitti_experiment_checkpoint_20200716 \
--imagenet_ckpt=/home/ubuntu/data/ResNet18/model.ckpt \
--train_steps=1000000 &
python kitti_eval/eval_depth.py --kitti_dir=/home/ubuntu/data/raw_data_KITTI/ --pred_file=/home/ubuntu/data/result_20200716_279296/result.npy
nohup python -m depth_from_video_in_the_wild.train \
--data_dir /home/ubuntu/Sayama/out \
--checkpoint_dir=/home/ubuntu/data/kitti_experiment_checkpoint_20200716 \
--imagenet_ckpt=/home/ubuntu/data/ResNet18/model.ckpt \
--train_steps=1000000 &
python inference_dfv.py \
--logtostderr \
--file_extension png \
--depth \
--egomotion false \
--input_dir /home/ubuntu/Sayama/tmpdir/2020_08_04/video1top_png/image_02/data/ \
--output_dir /home/ubuntu/Sayama/result_video1top_273486/ \
--model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20200716/model-273486
python inference_dfv.py \
--logtostderr \
--file_extension png \
--depth \
--egomotion false \
--input_dir /home/ubuntu/Sayama/tmpdir/2020_08_04/video1top_png/image_02/data/ \
--output_dir /home/ubuntu/Sayama/result_video1top_279296/ \
--model_ckpt /home/ubuntu/data/kitti_experiment_checkpoint_20200716/model-279296