spaCy is a library for advanced natural language processing in Python and Cython.
Documentation and details: https://spacy.io/
spaCy is built on the very latest research, but it isn't researchware. It was designed from day 1 to be used in real products. It's commercial open-source software, released under the MIT license.
- Labelled dependency parsing (91.8% accuracy on OntoNotes 5)
- Named entity recognition (82.6% accuracy on OntoNotes 5)
- Part-of-speech tagging (97.1% accuracy on OntoNotes 5)
- Easy to use word vectors
- All strings mapped to integer IDs
- Export to numpy data arrays
- Alignment maintained to original string, ensuring easy mark up calculation
- Range of easy-to-use orthographic features.
- No pre-processing required. spaCy takes raw text as input, warts and newlines and all.
- Fastest in the world: <50ms per document. No faster system has ever been announced.
- Accuracy within 1% of the current state of the art on all tasks performed (parsing, named entity recognition, part-of-speech tagging). The only more accurate systems are an order of magnitude slower or more.
- CPython 2.6, 2.7, 3.3, 3.4, 3.5 (only 64 bit)
- OSX
- Linux
- Windows (Cygwin, MinGW, Visual Studio)