Skip to content

Commit

Permalink
Add UniversalPropertyOf(Co)DualWithGiven(Co)DualObject
Browse files Browse the repository at this point in the history
  • Loading branch information
Tom Kuhmichel committed Oct 6, 2023
1 parent 086303d commit e506701
Show file tree
Hide file tree
Showing 9 changed files with 89 additions and 5 deletions.
2 changes: 1 addition & 1 deletion MonoidalCategories/PackageInfo.g
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ SetPackageInfo( rec(

PackageName := "MonoidalCategories",
Subtitle := "Monoidal and monoidal (co)closed categories",
Version := "2023.08-11",
Version := "2023.10-01",
Date := (function ( ) if IsBound( GAPInfo.SystemEnvironment.GAP_PKG_RELEASE_DATE ) then return GAPInfo.SystemEnvironment.GAP_PKG_RELEASE_DATE; else return Concatenation( ~.Version{[ 1 .. 4 ]}, "-", ~.Version{[ 6, 7 ]}, "-01" ); fi; end)( ),
License := "GPL-2.0-or-later",

Expand Down
19 changes: 19 additions & 0 deletions MonoidalCategories/gap/ClosedMonoidalCategories.autogen.gd
Original file line number Diff line number Diff line change
Expand Up @@ -711,3 +711,22 @@ DeclareOperation( "AddUniversalPropertyOfDual",

DeclareOperation( "AddUniversalPropertyOfDual",
[ IsCapCategory, IsList ] );

#! @Description
#! The arguments are a category $C$ and a function $F$.
#! This operation adds the given function $F$
#! to the category for the basic operation `UniversalPropertyOfDualWithGivenDualObject`.
#! $F: ( t, a, alpha, d ) \mapsto \mathtt{UniversalPropertyOfDualWithGivenDualObject}(t, a, alpha, d)$.
#! @Returns nothing
#! @Arguments C, F
DeclareOperation( "AddUniversalPropertyOfDualWithGivenDualObject",
[ IsCapCategory, IsFunction ] );

DeclareOperation( "AddUniversalPropertyOfDualWithGivenDualObject",
[ IsCapCategory, IsFunction, IsInt ] );

DeclareOperation( "AddUniversalPropertyOfDualWithGivenDualObject",
[ IsCapCategory, IsList, IsInt ] );

DeclareOperation( "AddUniversalPropertyOfDualWithGivenDualObject",
[ IsCapCategory, IsList ] );
11 changes: 11 additions & 0 deletions MonoidalCategories/gap/ClosedMonoidalCategories.gd
Original file line number Diff line number Diff line change
Expand Up @@ -314,6 +314,17 @@ DeclareAttribute( "IsomorphismFromInternalHomIntoTensorUnitToDualObject",
DeclareOperation( "UniversalPropertyOfDual",
[ IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism ] );

#! @Description
#! The arguments are two objects $t,a$,
#! a morphism $\alpha: t \otimes a \rightarrow 1$ and
#! the dual object $d = a^{\vee}$.
#! The output is the morphism $t \rightarrow a^{\vee}$
#! given by the universal property of $a^{\vee}$.
#! @Returns a morphism in $\mathrm{Hom}(t, a^{\vee})$.
#! @Arguments t, a, alpha, d
DeclareOperation( "UniversalPropertyOfDualWithGivenDualObject",
[ IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryObject ] );

#! @Description
#! The argument is a morphism $\alpha: a \rightarrow b$.
#! The output is the corresponding morphism $1 \rightarrow \mathrm{\underline{Hom}}(a,b)$
Expand Down
12 changes: 12 additions & 0 deletions MonoidalCategories/gap/ClosedMonoidalCategoriesMethodRecord.gi
Original file line number Diff line number Diff line change
Expand Up @@ -394,6 +394,18 @@ UniversalPropertyOfDual := rec(
# Test in ClosedMonoidalCategoriesTest
),

UniversalPropertyOfDualWithGivenDualObject:= rec(
filter_list := [ "category", "object", "object", "morphism", "object" ],
input_arguments_names := [ "cat", "t", "a", "alpha", "d" ],
output_source_getter_string := "t",
output_source_getter_preconditions := [ ],
output_range_getter_string := "d",
output_range_getter_preconditions := [ ],
return_type := "morphism",
dual_operation := "UniversalPropertyOfCoDualWithGivenCoDualObject",
dual_arguments_reversed := false,
),

LambdaIntroduction := rec(
filter_list := [ "category", "morphism" ],
input_arguments_names := [ "cat", "alpha" ],
Expand Down
19 changes: 19 additions & 0 deletions MonoidalCategories/gap/CoclosedMonoidalCategories.autogen.gd
Original file line number Diff line number Diff line change
Expand Up @@ -711,3 +711,22 @@ DeclareOperation( "AddUniversalPropertyOfCoDual",

DeclareOperation( "AddUniversalPropertyOfCoDual",
[ IsCapCategory, IsList ] );

#! @Description
#! The arguments are a category $C$ and a function $F$.
#! This operation adds the given function $F$
#! to the category for the basic operation `UniversalPropertyOfCoDualWithGivenCoDualObject`.
#! $F: ( t, a, alpha, c ) \mapsto \mathtt{UniversalPropertyOfCoDualWithGivenCoDualObject}(t, a, alpha, c)$.
#! @Returns nothing
#! @Arguments C, F
DeclareOperation( "AddUniversalPropertyOfCoDualWithGivenCoDualObject",
[ IsCapCategory, IsFunction ] );

DeclareOperation( "AddUniversalPropertyOfCoDualWithGivenCoDualObject",
[ IsCapCategory, IsFunction, IsInt ] );

DeclareOperation( "AddUniversalPropertyOfCoDualWithGivenCoDualObject",
[ IsCapCategory, IsList, IsInt ] );

DeclareOperation( "AddUniversalPropertyOfCoDualWithGivenCoDualObject",
[ IsCapCategory, IsList ] );
11 changes: 11 additions & 0 deletions MonoidalCategories/gap/CoclosedMonoidalCategories.gd
Original file line number Diff line number Diff line change
Expand Up @@ -311,6 +311,17 @@ DeclareAttribute( "IsomorphismFromInternalCoHomFromTensorUnitToCoDualObject",
DeclareOperation( "UniversalPropertyOfCoDual",
[ IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism ] );

#! @Description
#! The arguments are two objects $t,a$,
#! a morphism $\alpha: 1 \rightarrow t \otimes a$ and
#! the codual object $c = a_{\vee}$.
#! The output is the morphism $a_{\vee} \rightarrow t$
#! given by the universal property of $a_{\vee}$.
#! @Returns a morphism in $\mathrm{Hom}(a_{\vee}, t)$.
#! @Arguments t, a, alpha, c
DeclareOperation( "UniversalPropertyOfCoDualWithGivenCoDualObject",
[ IsCapCategoryObject, IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryObject] );

#! @Description
#! The argument is a morphism $\alpha: a \rightarrow b$.
#! The output is the corresponding morphism $ \mathrm{\underline{coHom}}(a,b) \rightarrow 1$
Expand Down
12 changes: 12 additions & 0 deletions MonoidalCategories/gap/CoclosedMonoidalCategoriesMethodRecord.gi
Original file line number Diff line number Diff line change
Expand Up @@ -394,6 +394,18 @@ UniversalPropertyOfCoDual := rec(
# Test in CoclosedMonoidalCategoriesTest
),

UniversalPropertyOfCoDualWithGivenCoDualObject := rec(
filter_list := [ "category", "object", "object", "morphism", "object" ],
input_arguments_names := [ "cat", "t", "a", "alpha", "c" ],
output_source_getter_string := "c",
output_source_getter_preconditions := [ ],
output_range_getter_string := "t",
output_range_getter_preconditions := [ ],
return_type := "morphism",
dual_operation := "UniversalPropertyOfDualWithGivenDualObject",
dual_arguments_reversed := false,
),

CoLambdaIntroduction := rec(
filter_list := [ "category", "morphism" ],
input_arguments_names := [ "cat", "alpha" ],
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ AddDerivationToCAP( MorphismToBidualWithGivenBidual,
[ Braiding, 1 ],
[ DualOnObjects, 2 ],
[ EvaluationForDual, 1 ],
[ UniversalPropertyOfDual, 1 ] ],
[ UniversalPropertyOfDualWithGivenDualObject, 1 ] ],

function( cat, a, avv )
local alpha;
Expand All @@ -137,7 +137,7 @@ AddDerivationToCAP( MorphismToBidualWithGivenBidual,
alpha := PreCompose( cat, Braiding( cat, a, DualOnObjects( cat, a ) ),
EvaluationForDual( cat, a ) );

return UniversalPropertyOfDual( cat, a, DualOnObjects( cat, a ), alpha );
return UniversalPropertyOfDualWithGivenDualObject( cat, a, DualOnObjects( cat, a ), alpha, avv );

end : CategoryFilter := IsSymmetricClosedMonoidalCategory );

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ AddDerivationToCAP( MorphismFromCoBidualWithGivenCoBidual,
[ CoclosedEvaluationForCoDual, 1 ],
[ Braiding, 1 ],
[ CoDualOnObjects, 2 ],
[ UniversalPropertyOfCoDual, 1 ] ],
[ UniversalPropertyOfCoDualWithGivenCoDualObject, 1 ] ],

function( cat, a, avv )
local alpha;
Expand All @@ -139,7 +139,7 @@ AddDerivationToCAP( MorphismFromCoBidualWithGivenCoBidual,
CoclosedEvaluationForCoDual( cat, a ),
Braiding( cat, CoDualOnObjects( cat, a ), a ) );

return UniversalPropertyOfCoDual( cat, a, CoDualOnObjects( cat, a ), alpha );
return UniversalPropertyOfCoDualWithGivenCoDualObject( cat, a, CoDualOnObjects( cat, a ), alpha, avv );

end : CategoryFilter := IsSymmetricCoclosedMonoidalCategory );

Expand Down

0 comments on commit e506701

Please sign in to comment.