Skip to content

iaqn/Mars_reproduction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 

Repository files navigation

Mars_reproduction

这是对论文《MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving》的复现。
官方开源链接为:MARS GitHub 仓库 由于数据量过于庞大的原因,有两个文件夹datasetoutputs并没有上传。 不过在这里,你可以查看四组消融实验的wanb报告,里面有完整可视化的数据。 MARS模型-KITTI报告 MARS模型-KITTI报告

Quantitative Evaluation for Ablation Studies

ID Settings KITTI V-KITTI
Model Sampler Category $\mathcal{L}_\text{sky}$ $\mathcal{L}_\text{depth}$ $\mathcal{L}_\text{sem}$ $\mathcal{L}_\texttt{accum}$ PSNR $\uparrow$ SSIM $\uparrow$ LPIPS $\downarrow$ PSNR $\uparrow$ SSIM $\uparrow$ LPIPS $\downarrow$
1* Grid / Ours prop / c2f $\dagger$ 25.04 0.782 0.175 28.37 0.907 0.108
2 MLP / Ours c2f / c2f 20.14 0.589 0.476 22.19 0.664 0.409
3 Grid / Ours prop / c2f × 21.35 0.713 0.242 27.30 0.881 0.130
4 Grid / Ours prop / c2f × × 23.68 0.774 0.181 27.32 0.881 0.129
4 Grid / Ours prop / c2f × × 28.27 0.896 0.056 27.43 0.880 0.114
5 Grid / Ours prop / c2f × 23.66 0.769 0.184 27.30 0.880 0.128
6 Grid / Ours prop / c2f × 20.07 0.723 0.251 27.42 0.863 0.148
6 Grid / Ours prop / c2f × 18.60 0.589 0.402 20.44 0.631 0.373
7 Grid / MLP prop / c2f 20.46 0.709 0.255 26.46 0.875 0.132
8 Grid / Grid prop / prop 22.23 0.741 0.211 25.22 0.871 0.134
9 Grid / MLP prop / c2f × 20.98 0.699 0.257 27.27 0.881 0.130
10 Grid / Grid prop / prop × 23.71 0.763 0.193 26.65 0.882 0.125
11* MLP / MLP c2f / c2f 20.42 0.592 0.472 21.77 0.659 0.410

Notes

  • $\dagger$ prop represents proposal sampler, c2f represents coarse-to-fine sampler.
    • ID 1 is our default setting.
    • Red text(the second bold line) represents results from 300k iterations on the KITTI scene 06.
    • Blue text(the third bold line) represents results from 200k iterations on the V-KITTI scene 02.
      Sorry, colors cannot be displayed.

渲染结果

KITTI

KITTI-ID1 的渲染结果:

load-pretrain.mp4

KITTI-ID4 的渲染结果:

kitti-id4.mp4

KITTI-ID6 的渲染结果:

kitti-id6.mp4

VKITTI

The reason for the video repetition is due to the binocular camera.
VKITTI-ID4 的渲染结果:

vkitti-id4.mp4

VKITTI-ID6 的渲染结果:

vkitti-id6.mp4

Setting Up Environment

I use CUDA 11.8 and PyTorch 2.0.1.

Step 1: Create and Activate Conda Environment

First, create a new Conda environment with Python 3.9:

conda create --name mars -y python=3.9
conda activate mars

Step 2: Install Required Packages (this need torch >= 1.13.1)

pip install mars-nerfstudio  

Step 3: Clone and Build tiny-cuda-nn

git clone --recursive https://github.com/nvlabs/tiny-cuda-nn
cd tiny-cuda-nn

Build the project using CMake:

cmake -DCMAKE_CUDA_COMPILER=/usr/local/cuda-12.4/bin/nvcc . -B build
cmake --build build --config RelWithDebInfo -j

Install the PyTorch extension:

cd bindings/torch
python setup.py install

References:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published