这是对论文《MARS: An Instance-aware, Modular and Realistic Simulator for Autonomous Driving》的复现。
官方开源链接为:MARS GitHub 仓库
由于数据量过于庞大的原因,有两个文件夹dataset
和outputs
并没有上传。
不过在这里,你可以查看四组消融实验的wanb报告,里面有完整可视化的数据。
MARS模型-KITTI报告
MARS模型-KITTI报告
ID | Settings | KITTI | V-KITTI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Sampler | Category | PSNR |
SSIM |
LPIPS |
PSNR |
SSIM |
LPIPS |
|||||
1* | Grid / Ours | prop / c2f |
25.04 | 0.782 | 0.175 | 28.37 | 0.907 | 0.108 | |||||
2 | MLP / Ours | c2f / c2f | 20.14 | 0.589 | 0.476 | 22.19 | 0.664 | 0.409 | |||||
3 | Grid / Ours | prop / c2f | × | 21.35 | 0.713 | 0.242 | 27.30 | 0.881 | 0.130 | ||||
4 | Grid / Ours | prop / c2f | × | × | 23.68 | 0.774 | 0.181 | 27.32 | 0.881 | 0.129 | |||
4 | Grid / Ours | prop / c2f | × | × | 28.27 | 0.896 | 0.056 | 27.43 | 0.880 | 0.114 | |||
5 | Grid / Ours | prop / c2f | × | 23.66 | 0.769 | 0.184 | 27.30 | 0.880 | 0.128 | ||||
6 | Grid / Ours | prop / c2f | × | 20.07 | 0.723 | 0.251 | 27.42 | 0.863 | 0.148 | ||||
6 | Grid / Ours | prop / c2f | × | 18.60 | 0.589 | 0.402 | 20.44 | 0.631 | 0.373 | ||||
7 | Grid / MLP | prop / c2f | 20.46 | 0.709 | 0.255 | 26.46 | 0.875 | 0.132 | |||||
8 | Grid / Grid | prop / prop | 22.23 | 0.741 | 0.211 | 25.22 | 0.871 | 0.134 | |||||
9 | Grid / MLP | prop / c2f | × | 20.98 | 0.699 | 0.257 | 27.27 | 0.881 | 0.130 | ||||
10 | Grid / Grid | prop / prop | × | 23.71 | 0.763 | 0.193 | 26.65 | 0.882 | 0.125 | ||||
11* | MLP / MLP | c2f / c2f | 20.42 | 0.592 | 0.472 | 21.77 | 0.659 | 0.410 |
-
$\dagger$ prop
represents proposal sampler,c2f
represents coarse-to-fine sampler. -
- ID 1 is our default setting.
-
- Red text(the second bold line) represents results from 300k iterations on the KITTI scene 06.
-
- Blue text(the third bold line) represents results from 200k iterations on the V-KITTI scene 02.
Sorry, colors cannot be displayed.
- Blue text(the third bold line) represents results from 200k iterations on the V-KITTI scene 02.
KITTI-ID1 的渲染结果:
load-pretrain.mp4
KITTI-ID4 的渲染结果:
kitti-id4.mp4
KITTI-ID6 的渲染结果:
kitti-id6.mp4
The reason for the video repetition is due to the binocular camera.
VKITTI-ID4 的渲染结果:
vkitti-id4.mp4
VKITTI-ID6 的渲染结果:
vkitti-id6.mp4
I use CUDA 11.8 and PyTorch 2.0.1.
First, create a new Conda environment with Python 3.9:
conda create --name mars -y python=3.9
conda activate mars
pip install mars-nerfstudio
git clone --recursive https://github.com/nvlabs/tiny-cuda-nn
cd tiny-cuda-nn
Build the project using CMake:
cmake -DCMAKE_CUDA_COMPILER=/usr/local/cuda-12.4/bin/nvcc . -B build
cmake --build build --config RelWithDebInfo -j
Install the PyTorch extension:
cd bindings/torch
python setup.py install