This repo is based on the amazing repo from amitness, go check!
- Learning Philosophy
- Be able to perform A/B testing
- Be able to use experiment management tool
- Be familiar with Recommendation Systems
- Be able to model problems mathematically
- Be familiar with ML System/MLOps
- Be able to implement computer vision models
Learning Philosophy:
- Data Scientists Should Be More End-to-End
- Just in Time Learning
- Master Adjacent Disciplines
- T-shaped skills
- The Power of Tiny Gains
- Article: Multi-Armed Bandit (MAB) – A/B Testing Sans Regret
- Article: When to Run Bandit Tests Instead of A/B/n Tests
- Article: A/B Testing Machine Learning Models (Deployment Series: Guide 08)
- Datacamp: Customer Analytics & A/B Testing in Python
- Udacity: A/B Testing
- Udacity: A/B Testing for Business Analysts
- Youtube: Hypothesis testing with Applications in Data Science
0:10:33
- Article: How Netflix uses A/B tests to make decisions
Netflix
- A/B Testing and Beyond: Improving the Netflix Streaming Experience with Experimentation and Data Science
Netflix
- Quasi Experimentation at Netflix
Netflix
- Universal Holdout Groups at Disney Streaming
Disney
- Building an Intelligent Experimentation Platform with Uber Engineering
Uber
- Under the Hood of Uber’s Experimentation Platform
- DARWIN: Data Science and Artificial Intelligence Workbench at LinkedIn
LinkedIn
- My RecSys studies can be found on this repo
- 3Blue1Brown: Essence of Calculus
- The Essence of Calculus, Chapter 1
0:17:04
- The paradox of the derivative | Essence of calculus, chapter 2
0:17:57
- Derivative formulas through geometry | Essence of calculus, chapter 3
0:18:43
- Visualizing the chain rule and product rule | Essence of calculus, chapter 4
0:16:52
- What's so special about Euler's number e? | Essence of calculus, chapter 5
0:13:50
- Implicit differentiation, what's going on here? | Essence of calculus, chapter 6
0:15:33
- Limits, L'Hôpital's rule, and epsilon delta definitions | Essence of calculus, chapter 7
0:18:26
- Integration and the fundamental theorem of calculus | Essence of calculus, chapter 8
0:20:46
- What does area have to do with slope? | Essence of calculus, chapter 9
0:12:39
- Higher order derivatives | Essence of calculus, chapter 10
0:05:38
- Taylor series | Essence of calculus, chapter 11
0:22:19
- What they won't teach you in calculus
0:16:22
- The Essence of Calculus, Chapter 1
- 3Blue1Brown: Essence of linear algebra
- Vectors, what even are they? | Essence of linear algebra, chapter 1
0:09:52
- Linear combinations, span, and basis vectors | Essence of linear algebra, chapter 2
0:09:59
- Linear transformations and matrices | Essence of linear algebra, chapter 3
0:10:58
- Matrix multiplication as composition | Essence of linear algebra, chapter 4
0:10:03
- Three-dimensional linear transformations | Essence of linear algebra, chapter 5
0:04:46
- The determinant | Essence of linear algebra, chapter 6
0:10:03
- Inverse matrices, column space and null space | Essence of linear algebra, chapter 7
0:12:08
- Nonsquare matrices as transformations between dimensions | Essence of linear algebra, chapter 8
0:04:27
- Dot products and duality | Essence of linear algebra, chapter 9
0:14:11
- Cross products | Essence of linear algebra, Chapter 10
0:08:53
- Cross products in the light of linear transformations | Essence of linear algebra chapter 11
0:13:10
- Cramer's rule, explained geometrically | Essence of linear algebra, chapter 12
0:12:12
- Change of basis | Essence of linear algebra, chapter 13
0:12:50
- Eigenvectors and eigenvalues | Essence of linear algebra, chapter 14
0:17:15
- Abstract vector spaces | Essence of linear algebra, chapter 15
0:16:46
- Vectors, what even are they? | Essence of linear algebra, chapter 1
- 3Blue1Brown: Neural networks
- Article: A Visual Tour of Backpropagation
- Article: Entropy, Cross Entropy, and KL Divergence
- Article: Interview Guide to Probability Distributions
- Article: Introduction to Linear Algebra for Applied Machine Learning with Python
- Article: Entropy of a probability distribution — in layman’s terms
- Article: KL Divergence — in layman’s terms
- Article: Probability Distributions
- Article: Relearning Matrices as Linear Functions
- Article: You Could Have Come Up With Eigenvectors - Here's How
- Article: PageRank - How Eigenvectors Power the Algorithm Behind Google Search
- Article: Interactive Visualization of Why Eigenvectors Matter
- Article: Cross-Entropy and KL Divergence
- Article: Why Randomness Is Information?
- Article: Basic Probability Theory
- Article: Math You Need to Succeed In ML Interviews
- Book: Basics of Linear Algebra for Machine Learning
- Datacamp: Introduction to Statistics in Python
- Datacamp: Foundations of Probability in Python
- Datacamp: Statistical Thinking in Python (Part 1)
- Datacamp: Statistical Thinking in Python (Part 2)
- Datacamp: Statistical Simulation in Python
- edX: Essential Statistics for Data Analysis using Excel
- Computational Linear Algebra for Coders
- Khan Academy:
- MIT: 18.06 Linear Algebra (Professor Strang)
- 1. The Geometry of Linear Equations
0:39:49
- 2. Elimination with Matrices.
0:47:41
- 3. Multiplication and Inverse Matrices
0:46:48
- 4. Factorization into A = LU
0:48:05
- 5. Transposes, Permutations, Spaces R^n
0:47:41
- 6. Column Space and Nullspace
0:46:01
- 9. Independence, Basis, and Dimension
0:50:14
- 10. The Four Fundamental Subspaces
0:49:20
- 11. Matrix Spaces; Rank 1; Small World Graphs
0:45:55
- 14. Orthogonal Vectors and Subspaces
0:49:47
- 15. Projections onto Subspaces
0:48:51
- 16. Projection Matrices and Least Squares
0:48:05
- 17. Orthogonal Matrices and Gram-Schmidt
0:49:09
- 21. Eigenvalues and Eigenvectors
0:51:22
- 22. Diagonalization and Powers of A
0:51:50
- 24. Markov Matrices; Fourier Series
0:51:11
- 25. Symmetric Matrices and Positive Definiteness
0:43:52
- 27. Positive Definite Matrices and Minima
0:50:40
- 29. Singular Value Decomposition
0:40:28
- 30. Linear Transformations and Their Matrices
0:49:27
- 31. Change of Basis; Image Compression
0:50:13
- 33. Left and Right Inverses; Pseudoinverse
0:41:52
- 1. The Geometry of Linear Equations
- StatQuest: Statistics Fundamentals
- StatQuest: Histograms, Clearly Explained
0:03:42
- StatQuest: What is a statistical distribution?
0:05:14
- StatQuest: The Normal Distribution, Clearly Explained!!!
0:05:12
- Statistics Fundamentals: Population Parameters
0:14:31
- Statistics Fundamentals: The Mean, Variance and Standard Deviation
0:14:22
- StatQuest: What is a statistical model?
0:03:45
- StatQuest: Sampling A Distribution
0:03:48
- Hypothesis Testing and The Null Hypothesis
0:14:40
- Alternative Hypotheses: Main Ideas!!!
0:09:49
- p-values: What they are and how to interpret them
0:11:22
- How to calculate p-values
0:25:15
- p-hacking: What it is and how to avoid it!
0:13:44
- Statistical Power, Clearly Explained!!!
0:08:19
- Power Analysis, Clearly Explained!!!
0:16:44
- Covariance and Correlation Part 1: Covariance
0:22:23
- Covariance and Correlation Part 2: Pearson's Correlation
0:19:13
- StatQuest: R-squared explained
0:11:01
- The Central Limit Theorem
0:07:35
- StatQuickie: Standard Deviation vs Standard Error
0:02:52
- StatQuest: The standard error
0:11:43
- StatQuest: Technical and Biological Replicates
0:05:27
- StatQuest - Sample Size and Effective Sample Size, Clearly Explained
0:06:32
- Bar Charts Are Better than Pie Charts
0:01:45
- StatQuest: Boxplots, Clearly Explained
0:02:33
- StatQuest: Logs (logarithms), clearly explained
0:15:37
- StatQuest: Confidence Intervals
0:06:41
- StatQuickie: Thresholds for Significance
0:06:40
- StatQuickie: Which t test to use
0:05:10
- StatQuest: One or Two Tailed P-Values
0:07:05
- The Binomial Distribution and Test, Clearly Explained!!!
0:15:46
- StatQuest: Quantiles and Percentiles, Clearly Explained!!!
0:06:30
- StatQuest: Quantile-Quantile Plots (QQ plots), Clearly Explained
0:06:55
- StatQuest: Quantile Normalization
0:04:51
- StatQuest: Probability vs Likelihood
0:05:01
- StatQuest: Maximum Likelihood, clearly explained!!!
0:06:12
- Maximum Likelihood for the Exponential Distribution, Clearly Explained! V2.0
0:09:39
- Why Dividing By N Underestimates the Variance
0:17:14
- Maximum Likelihood for the Binomial Distribution, Clearly Explained!!!
0:11:24
- Maximum Likelihood For the Normal Distribution, step-by-step!
0:19:50
- StatQuest: Odds and Log(Odds), Clearly Explained!!!
0:11:30
- StatQuest: Odds Ratios and Log(Odds Ratios), Clearly Explained!!!
0:16:20
- Live 2020-04-20!!! Expected Values
0:33:00
- StatQuest: Histograms, Clearly Explained
- Udacity: Eigenvectors and Eigenvalues
- Udacity: Linear Algebra Refresher
- Udacity: Statistics
- Udacity: Intro to Descriptive Statistics
- Udacity: Intro to Inferential Statistics
- StatsCast: What is a t-test?
0:09:56
- Coursera: Linear Algebra for Machine Learning and Data Science
- The Magic of Merlin: Shopify's New Machine Learning Platform
Shopify
2022
- Coursera: Introduction to Machine Learning in Production
-
Youtube: Deep Learning for Video Summarization
0:47:40
IQA
- Paper: Browsing and Sorting Digital Pictures Using Automatic Image Classification and Quality Analysis
- Paper: Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study
- Article: Image Quality Assessment : BRISQUE
- Paper: Multimedia Features for Click Prediction of New Ads in Display Advertising