-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
simple working jupyter lab notebook example
- Loading branch information
Showing
1 changed file
with
166 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "cc68f0ae-c4c3-4654-9b2f-149e0e6a8ce3", | ||
"metadata": {}, | ||
"source": [ | ||
"This notebook serves as a gentle introduction to the normflow package. Let's begin by importing a some standard libraries." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "8c51a10e-8602-4843-90e6-862d9b8f26ef", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import sys" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "444e3c9a-928f-4b9b-b449-9996d961f026", | ||
"metadata": {}, | ||
"source": [ | ||
"Now let's import the key objects from the normflow library. Net, Action, etc..." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "d830795e-1e48-452f-b223-80b970d8d9f0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from normflow import np, torch, Model\n", | ||
"from normflow import backward_sanitychecker\n", | ||
"from normflow.nn import DistConvertor_\n", | ||
"from normflow.action import ScalarPhi4Action\n", | ||
"from normflow.prior import NormalPrior" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "3adc2eec-8328-43c3-9b96-3a696c337198", | ||
"metadata": {}, | ||
"source": [ | ||
"We define the parameters of our scalar field theory and the machine learning parameters." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f410b258-8c0f-46ef-b0a1-98e120fe8fbb", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"m_sq=-1.2\n", | ||
"lambd=0.5\n", | ||
"knots_len=10\n", | ||
"n_epochs=1000 \n", | ||
"batch_size=1024\n", | ||
"lat_shape=1 # basically a zero dimensional problem\n", | ||
"nranks=1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b4600e67-511c-4ef9-badd-25cf358d7f30", | ||
"metadata": {}, | ||
"source": [ | ||
"It's time to instantiate the neural network and do the training." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "6e315101-1fff-4f73-819b-2ed35a8921e3", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Not saving model snapshots\n", | ||
"\n", | ||
">>> Training progress (cpu) <<<\n", | ||
"\n", | ||
"Note: log(q/p) is estimated with normalized p; mean & error are obtained from samples in a batch\n", | ||
"\n", | ||
"Epoch: 1 | loss: -0.530407 | ess: 0.870286 | rho: 0.818643 | log(z): 1.11124(38) | log(q/p): 0.6(36) | accept_rate: 0.797(9)\n", | ||
"Epoch: 10 | loss: -0.812281 | ess: 0.895045 | rho: 0.808877 | log(z): 1.10289(33) | log(q/p): 0.3(22) | accept_rate: 0.808(10)\n", | ||
"Epoch: 100 | loss: -1.08288 | ess: 0.991174 | rho: 0.794849 | log(z): 1.115250(92) | log(q/p): 0.03(86) | accept_rate: 0.966(8)\n", | ||
"Epoch: 200 | loss: -1.1083 | ess: 0.996703 | rho: 0.983689 | log(z): 1.111443(56) | log(q/p): 0.00(10) | accept_rate: 0.982(5)\n", | ||
"Epoch: 300 | loss: -1.11372 | ess: 0.998849 | rho: 0.996756 | log(z): 1.114207(33) | log(q/p): 0.000(30) | accept_rate: 0.988(3)\n", | ||
"Epoch: 400 | loss: -1.11222 | ess: 0.997468 | rho: 0.991354 | log(z): 1.113817(49) | log(q/p): 0.002(63) | accept_rate: 0.979(4)\n", | ||
"Epoch: 500 | loss: -1.11301 | ess: 0.99917 | rho: 0.998099 | log(z): 1.113437(28) | log(q/p): 0.000(30) | accept_rate: 0.986(3)\n", | ||
"Epoch: 600 | loss: -1.11163 | ess: 0.99911 | rho: 0.997981 | log(z): 1.112047(29) | log(q/p): 0.000(28) | accept_rate: 0.985(4)\n", | ||
"Epoch: 700 | loss: -1.11178 | ess: 0.999655 | rho: 0.999024 | log(z): 1.111957(18) | log(q/p): 0.000(19) | accept_rate: 0.989(3)\n", | ||
"Epoch: 800 | loss: -1.11132 | ess: 0.999335 | rho: 0.998904 | log(z): 1.111686(25) | log(q/p): 0.000(28) | accept_rate: 0.988(3)\n", | ||
"Epoch: 900 | loss: -1.11311 | ess: 0.998195 | rho: 0.99595 | log(z): 1.114003(42) | log(q/p): 0.001(42) | accept_rate: 0.977(5)\n", | ||
"Epoch: 1000 | loss: -1.1122 | ess: 0.99951 | rho: 0.999103 | log(z): 1.112445(22) | log(q/p): 0.000(22) | accept_rate: 0.988(3)\n", | ||
"(cpu) Time = 2.91 sec.\n", | ||
"Sanity check is OK if following numbers are zero up to round off:\n", | ||
"1.38778e-15 1.11022e-15\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"net_ = DistConvertor_(knots_len, symmetric=True)\n", | ||
"\n", | ||
"action_dict = dict(kappa=0, m_sq=m_sq, lambd=lambd)\n", | ||
"prior = NormalPrior(shape=lat_shape)\n", | ||
"action = ScalarPhi4Action(**action_dict)\n", | ||
"\n", | ||
"model = Model(net_=net_, prior=prior, action=action)\n", | ||
"\n", | ||
"snapshot_path = None\n", | ||
"\n", | ||
"hyperparam = dict(lr=0.01, weight_decay=0.)\n", | ||
"\n", | ||
"fit_kwargs = dict(\n", | ||
" n_epochs=n_epochs,\n", | ||
" save_every=None,\n", | ||
" batch_size=batch_size // nranks,\n", | ||
" hyperparam=hyperparam,\n", | ||
" checkpoint_dict=dict(print_stride=100, snapshot_path=snapshot_path)\n", | ||
" )\n", | ||
"\n", | ||
"model.fit(**fit_kwargs)\n", | ||
"\n", | ||
"backward_sanitychecker(model)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7c6d3976-79b5-451b-987a-e7c7efe42610", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |