DistRL-TensorFlow2 is a repository that implements a variety of popular Distribution Reinforcement Learning Algorithms using TensorFlow2. Distributional RL is an algorithm suitable for stochastic environments. If you want to study the Distribution RL, this repository will be the best choice. The dist-rl-tf2 includes three Distributional RL algorithms published by DeepMind, a leading AI research institute.
Paper A Distributional Perspective on Reinforcement Learning
Author Marc G. Bellemare, Will Dabney, Rémi Munos
Method OFF-Policy / Temporal-Diffrence / Model-Free
Action Discrete only
# idea01. The output of the Q Network is a Distribution Vector, not a Scalar Value.
def create_model(self):
input_state = Input((self.state_dim,))
h1 = Dense(64, activation='relu')(input_state)
h2 = Dense(64, activation='relu')(h1)
outputs = []
for _ in range(self.action_dim):
outputs.append(Dense(self.atoms, activation='softmax')(h2))
return tf.keras.Model(input_state, outputs)
# Discrete Action Space C51
$ python C51/C51.py
Paper Distributional Reinforcement Learning with Quantile Regression
Author Will Dabney, Mark Rowland, Marc G. Bellemare, Rémi Munos
Method OFF-Policy / Temporal-Diffrence / Model-Free
Action Discrete only
# idea01. The output of the Q Network is Quantile Region, not the Distribution Vector.
def create_model(self):
return tf.keras.Sequential([
Input([self.state_dim, ]),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(self.action_dim * self.atoms, activation='linear'),
Reshape([self.action_dim, self.atoms])
])
# idea02. Use Quantile Huber Loss instead of CategoryCrossEntropy Loss.
def quantile_huber_loss(self, target, pred, actions):
pred = tf.reduce_sum(pred * tf.expand_dims(actions, -1), axis=1)
pred_tile = tf.tile(tf.expand_dims(pred, axis=2), [1, 1, self.atoms])
target_tile = tf.tile(tf.expand_dims(
target, axis=1), [1, self.atoms, 1])
huber_loss = self.huber_loss(target_tile, pred_tile)
tau = tf.reshape(np.array(self.tau), [1, self.atoms])
inv_tau = 1.0 - tau
tau = tf.tile(tf.expand_dims(tau, axis=1), [1, self.atoms, 1])
inv_tau = tf.tile(tf.expand_dims(inv_tau, axis=1), [1, self.atoms, 1])
error_loss = tf.math.subtract(target_tile, pred_tile)
loss = tf.where(tf.less(error_loss, 0.0), inv_tau *
huber_loss, tau * huber_loss)
loss = tf.reduce_mean(tf.reduce_sum(
tf.reduce_mean(loss, axis=2), axis=1))
return loss
# Discrete Action Space QRDQN
$ python QR-DQN/QR-DQN.py
Paper Implicit Quantile Networks for Distributional Reinforcement Learning
Author Will Dabney, Georg Ostrovski, David Silver, Rémi Munos
Method OFF-Policy / Temporal-Diffrence / Model-Free
Action Discrete only
# idea01. Use the quantile embedding network.
def call(self, state):
x = self.feature_extraction(state)
feature_dim = x.shape[1]
tau = np.random.rand(self.atoms, 1)
pi_mtx = tf.constant(np.expand_dims(
np.pi * np.arange(0, self.quantile_dim), axis=0))
cos_tau = tf.cos(tf.matmul(tau, pi_mtx))
phi = self.relu(self.phi(cos_tau) +
tf.expand_dims(self.phi_bias, axis=0))
phi = tf.expand_dims(phi, axis=0)
x = tf.reshape(x, (-1, feature_dim))
x = tf.expand_dims(x, 1)
x = x * phi
x = self.fc(x)
x = self.fc_q(x)
q = tf.transpose(x, [0, 2, 1])
return q, tau
# idea02. Use the random sampled value instead of the specified value of the tau.
tau = np.random.rand(self.atoms, 1)
# Discrete Action Space IQN
$ python IQN/IQN.py
- https://reinforcement-learning-kr.github.io/2018/09/27/Distributional_intro/
- https://github.com/reinforcement-learning-kr/distributional_rl
- https://github.com/floringogianu/categorical-dqn
- https://github.com/ku2482/fqf-iqn-qrdqn.pytorch
- https://github.com/xlnwel/model-free-algorithms
- https://github.com/valeoai/rainbow-iqn-apex