Skip to content

Commit

Permalink
Merge pull request #109 from matsim-org/develop
Browse files Browse the repository at this point in the history
Develop
  • Loading branch information
rakow authored Dec 9, 2022
2 parents 8450af5 + c488432 commit baca937
Show file tree
Hide file tree
Showing 88 changed files with 11,713 additions and 1,771 deletions.
1 change: 1 addition & 0 deletions .editorconfig
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ charset = utf-8
indent_style = tab
insert_final_newline = true
trim_trailing_whitespace = true
max_line_length = 150

[Makefile]
indent_style = tab
2 changes: 1 addition & 1 deletion pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
<modelVersion>4.0.0</modelVersion>
<groupId>com.github.matsim-org</groupId>
<artifactId>matsim-episim</artifactId>
<version>22.6</version>
<version>22.12</version>

<name>MATSim Episim</name>
<description>Epidemic simulation for MATSim</description>
Expand Down
98 changes: 98 additions & 0 deletions src/main/R/Covid19ScenarioHubSubmission.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@

library(lubridate)
library(tidyverse)
library(readr)



rm(list=ls())
source("/Users/jakob/git/matsim-episim/src/main/R/masterJR-utils.R", encoding = 'utf-8')

# Global variables
directory <- "/Users/jakob/git/public-svn/matsim/scenarios/countries/de/episim/battery/jakob/2022-07-27/4-eu-noAgg/"

origin_date <- ymd("2022-07-24") # first day (sunday) of epiweek 30, 2022
end_date <- ymd("2023-07-29") # last day (saturday) of epiweek 30, 2023 (latest possible value)



## read & prep infections
infections_raw <- read_combine_episim_output_zipped(directory,"infections.txt.csv")

infections_incidence <- convert_infections_into_incidence(directory,infections_raw,FALSE) %>%
select(-c(infections_week,nShowingSymptomsCumulative, district, incidence))


population_cologne <- infections_raw[1, "nSusceptible"]

population_germany <- 83695430 #https://www.destatis.de/EN/Themes/Society-Environment/Population/Current-Population/Tables/liste-current-population.html
scale_factor <- population_germany / population_cologne # pop germany / pop koelln

infections_ready <- infections_incidence %>%
filter(date >= origin_date & date <= end_date) %>%
# mutate(weekday = lubridate::wday(date, label = TRUE)) %>%
mutate(year = epiyear(date)) %>%
mutate(epiweek = epiweek(date)) %>%
group_by(seed,vacCamp,vacType,year,epiweek) %>%
summarise(value = sum(infections) * scale_factor, target_end_date = last(date) ) %>%
mutate(target_variable = "inc infection") %>%
select(year, epiweek, target_end_date, target_variable, value, seed, vacCamp, vacType)


## read & prep hospitalizations
hosp_raw <- read_combine_episim_output_zipped(directory,"post.hospital.tsv")

hosp_ready <- hosp_raw %>%
filter(date >= origin_date & date <= end_date) %>%
mutate(year = year(date)) %>%
mutate(wkday = lubridate::wday(date, label = TRUE)) %>%
filter(wkday == "Sat") %>%
filter(measurement == "intakesHosp") %>%
filter(severity == "Omicron") %>%
mutate(epiweek = epiweek(date)) %>%
rename("target_end_date" = date, value = n) %>%
mutate(value = value * population_cologne / 100000 * scale_factor) %>%
mutate(target_variable = "inc hosp") %>%
select(year, epiweek, target_end_date, target_variable, value, seed, vacCamp, vacType)

# combine two dataframes and modify columns to match specs
combined <- rbind(infections_ready, hosp_ready)
# combined <- infections_ready #todo revert




seed <- unique(combined$seed)
sample <- seq(length(seed))
map <- data.frame(seed,sample)

final <- combined %>% filter(vacCamp!="off") %>%
mutate(scenario_id = paste0(vacCamp,"_",vacType)) %>%
mutate(scenario_id = case_when(scenario_id == "60plus_omicronUpdate"~"A-2022-07-24",
scenario_id == "18plus_omicronUpdate"~"B-2022-07-24",
scenario_id == "60plus_mRNA"~"C-2022-07-24",
scenario_id == "18plus_mRNA"~"D-2022-07-24")) %>%
merge(map,by ="seed") %>%
mutate(horizon = case_when(year == 2022 ~ epiweek - 29, year == 2023~ (52-29) + epiweek)) %>%
mutate("origin_date" = "2022-07-24") %>%
mutate("location" = "DE") %>%
mutate(value = round(value)) %>%
select(origin_date,scenario_id, horizon, target_end_date, location, sample,target_variable, value) %>%
arrange(scenario_id,sample,horizon) %>%
mutate(horizon = paste0(horizon," wk"))

write.csv(final,"/Users/jakob/git/covid19-scenario-hub-europe/data-processed/MODUS_Covid-Episim/2022-07-24-MODUS_Covid-Episim.csv", row.names = FALSE)



# xxx <- read.delim("/Users/jakob/antibodies_2022-07-23.tsv",sep = "\t")
#
# yyy <- xxx %>% filter(nVaccinations == 0 & nInfections == 0)
#
# nrow(yyy)/nrow(xxx)






89 changes: 89 additions & 0 deletions src/main/R/analyseCases.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
library(lubridate)
library(tidyverse)
library(readr)



rm(list=ls())
source("/Users/jakob/git/matsim-episim/src/main/R/masterJR-utils.R", encoding = 'utf-8')

# directory_snap_old <- "/Users/jakob/git/public-svn/matsim/scenarios/countries/de/episim/battery/jakob/2022-11-05/2-imm-snap/"
directory_base <- "/Users/jakob/git/public-svn/matsim/scenarios/countries/de/episim/battery/jakob/2022-11-24/1-makeImmHist/"
directory_imm <- "/Users/jakob/git/public-svn/matsim/scenarios/countries/de/episim/battery/jakob/2022-11-24/3-imm-20seeds/"
# file_root<- "antibodies.tsv"

#infections
file_root_inf<- "infections.txt.csv"
snap_inf_raw <- read_combine_episim_output_zipped(directory_base, file_root_inf )
# snap_inf_raw_old <- read_combine_episim_output_zipped(directory_snap, file_root_inf )
imm_inf_raw <- read_combine_episim_output_zipped(directory_imm, file_root_inf)

unique(snap_inf_raw$seed)


start_date <- ymd("2022-04-01")
end_date <- ymd("2022-09-01")
snap_inf <- snap_inf_raw %>%
filter(date >= start_date) %>%
filter(date <= end_date) %>%
filter(seed %in% unique(imm_inf_raw$seed))
# filter(pHh == 0.0, immuneSigma == 0.0)
# mutate(vax = generic + mRNA + vector + ba1Update + ba5Update + natural)


imm_inf <- imm_inf_raw %>%
filter(date >= start_date) %>%
filter(date <= end_date) %>%
filter(StrainA == 2.0 & startFromImm =="sepSeeds")


# mutate(vax = generic + mRNA + vector + ba1Update + ba5Update + natural)
ggplot() + #nShowingSymptoms # SARS_CoV_2
geom_line(imm_inf, mapping = aes(date, nShowingSymptoms , group = seed, col = "imm-hist")) +
geom_line(snap_inf, mapping = aes(date, nShowingSymptoms , group = seed, col = "snapshot")) +
scale_color_manual(name='Regression Model',
breaks=c('snapshot', 'imm-hist'),
values=c('snapshot'='red', 'imm-hist'='blue'))+
labs(alt = "hello world") +
ggtitle("Infections")



# antibodies
file_root_ab<- "antibodies.tsv"
snap_ab_raw <- read_combine_episim_output_zipped(directory_base, file_root_ab )
imm_ab_raw <- read_combine_episim_output_zipped(directory_imm, file_root_ab)


start_date <- ymd("2021-11-15")
end_date <- ymd("2029-11-30")
snap_ab <- snap_ab_raw %>%
filter(date >= start_date) %>%
filter(date <= end_date) %>%
filter(pHh == 0.0, immuneSigma == 0.0)
# mutate(vax = generic + mRNA + vector + ba1Update + ba5Update + natural)
imm_ab <- imm_ab_raw %>%
filter(date >= start_date) %>%
filter(date <= end_date) %>%
filter(pHh == 0.0, immuneSigma == 0.0)
# mutate(vax = generic + mRNA + vector + ba1Update + ba5Update + natural)
ggplot() + #nShowingSymptoms # SARS_CoV_2
geom_line(imm_ab, mapping = aes(date, SARS_CoV_2 , group = seed, col = "imm-hist")) +
geom_line(snap_ab, mapping = aes(date, SARS_CoV_2 , group = seed, col = "snapshot")) +
scale_color_manual(name='Regression Model',
breaks=c('snapshot', 'imm-hist'),
values=c('snapshot'='red', 'imm-hist'='blue'))+
ggtitle("Antibodies")




# scale_colour_manual(name = "scenario", values = c("red"="red", "blue"="blue"), labels = c("snapshot", "immune history")) +
# facet_wrap(pHh ~ immuneSigma)

# antibodies are a bit lower for immune history people
# jump in snapshot on first day is a bit sus... (maybe there is something wrong there..., not with immune history))
# what happens to Antibodies from June 30 to July 1?? Why do they jump?

# infections: now imm-Hist (blue) run has lower case numbers... too many antibodies or whats going on?
# but blue also has slightly lower antibodies. How can this be?
Loading

0 comments on commit baca937

Please sign in to comment.