Skip to content

mtkwT/adaptive-hessian-free-optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Hessian-free Optimization

Required

  • Docker version >= 19.03.2
  • docker-compose version >= 1.24.1

Set up

Build container

$ cd build-env
$ docker-compose build
$ docker-compose run adaptive-hf /bin/bash

Training model using Adaptive-HF

Example

$ (adaptive-hf) cd /code/adaptive-hessian-free-optimization
$ (adaptive-hf) python exp/training.py

Argments

  • --arch: model architecture, default is 'LeNet'.
  • --gpu-num: GPU Device number, default is 1.
  • --seed: random seed for training model, default is 1.
  • --batch-size: input batch size for training model, default is 128.
  • --epochs: number of epochs for training model, default is 10.
  • --lr: learning rate, default is 0.001.
  • --damping: damping rate for constract a positive-definite Hessian matrix, default is 10.
  • --beta2: hyperparameter of Adam, default is 1e-8.

The following three parametes are the unique hyperparameters of Adaptive-HF.

  • --cg-epsilon: default is 1e-3.
  • --cg-sigma: the upper bound of the conjugate gradients, default is 50.
  • --cg-L-smoothness: the lower bound of L-smoothness, default is 100.

Comparison between Original-HF and Adaptive-HF

Releases

No releases published

Packages

No packages published