Skip to content

Latest commit

 

History

History
91 lines (60 loc) · 3.52 KB

README.md

File metadata and controls

91 lines (60 loc) · 3.52 KB

Recommender System WITH PyTorch 🟢🟠🔴

PyTorch Implementation of classic Recommender System Models mainly used for self-learing&communication.

checkout for tensorflow branch

corresponding papers 🚀 RS_Papers 📖

Matching

Matrix Factorization

Model dataset loss_func metrics state
LFM ml-100k MSELoss MSE: 0.9031 🟢
BiasSVD ml-100k MSELoss MSE: 0.8605 🟢
SVD++ ml-100k MSELoss MSE: 0.8493 🟢

Factorization Machine

Model dataset loss_func metrics state
FM criteo BCELoss AUC: 0.6934 🟢
FFM criteo BCELoss AUC: 0.6729 🟢

Sequential based

Model dataset loss_func metrics state
FPMC ml-100k sBPRLoss Recall@10: 0.0622 🟢
SASRec ml-100k BCEWithLogitsLoss NDCG@10: 0.1801 HR@10: 0.3595 🟢

Knowledge aware

Model dataset loss_func metrics state
RippleNet ml-1m BCELoss AUC: 0.8838 🟢

Graph embedding

DeepWalk Node2vec EGES

Point of Interests

MIND SDM

CF

Model dataset loss_func metrics state
NeuralCF ml-100k MSELoss MSE: 0.3322 🟢

Ranking

FM

Model dataset loss_func metrics state
FNN criteo BCELoss AUC: 0.6787 🟢
DeepFM criteo BCELoss AUC: 0.6854 🟢
NFM criteo BCELoss AUC: 0.6705 🟢
AFM criteo BCELoss AUC: 0.6572 🟢

LR

GBDT+LR

DNN

Model dataset loss_func metrics state
Deep Crossing criteo BCELoss AUC: 0.7210 🟢
PNN criteo BCELoss AUC: 0.6360 🟢
Wide&Deep criteo BCELoss AUC: 0.7074 🟢
DCN criteo BCELoss AUC: 0.7335 🟢
DIN amazon book BCELoss AUC: 0.5988 🟢

DIN: It seems that the feature engineering(negative sampling) of paper used for amazon book seems bad. I try hard but the auc of test cannot reach the 0.811 on amazon book.

Multi tasks

Model dataset loss_func metrics state
MMOE census-income BCEWithLogitsLoss income-AUC: 0.9061 marry-AUC: 0.9637 🟢
ESMM census-income BCEWithLogitsLoss income-ctr-AUC: 0.9242 ctcvr-AUC: 0.9122 🟢