PyTorch Implementation of classic Recommender System Models mainly used for self-learing&communication.
checkout for tensorflow branch
corresponding papers π RS_Papers π
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
LFM | ml-100k |
MSELoss | MSE: 0.9031 |
π’ |
BiasSVD | ml-100k |
MSELoss | MSE: 0.8605 |
π’ |
SVD++ | ml-100k |
MSELoss | MSE: 0.8493 |
π’ |
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
FM | criteo |
BCELoss | AUC: 0.6934 |
π’ |
FFM | criteo |
BCELoss | AUC: 0.6729 |
π’ |
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
FPMC | ml-100k |
sBPRLoss | Recall@10: 0.0622 |
π’ |
SASRec | ml-100k |
BCEWithLogitsLoss | NDCG@10: 0.1801 HR@10: 0.3595 |
π’ |
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
RippleNet | ml-1m |
BCELoss | AUC: 0.8838 |
π’ |
DeepWalk | Node2vec | EGES |
---|
MIND | SDM |
---|
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
NeuralCF | ml-100k |
MSELoss | MSE: 0.3322 |
π’ |
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
FNN | criteo |
BCELoss | AUC: 0.6787 |
π’ |
DeepFM | criteo |
BCELoss | AUC: 0.6854 |
π’ |
NFM | criteo |
BCELoss | AUC: 0.6705 |
π’ |
AFM | criteo |
BCELoss | AUC: 0.6572 |
π’ |
GBDT+LR |
---|
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
Deep Crossing | criteo |
BCELoss | AUC: 0.7210 |
π’ |
PNN | criteo |
BCELoss | AUC: 0.6360 |
π’ |
Wide&Deep | criteo |
BCELoss | AUC: 0.7074 |
π’ |
DCN | criteo |
BCELoss | AUC: 0.7335 |
π’ |
DIN | amazon book |
BCELoss | AUC: 0.5988 |
π’ |
DIN: It seems that the feature engineering(negative sampling) of paper used for
amazon book
seems bad. I try hard but the auc of test cannot reach the0.811
onamazon book
.
Model | dataset | loss_func | metrics | state |
---|---|---|---|---|
MMOE | census-income | BCEWithLogitsLoss | income-AUC: 0.9061 marry-AUC: 0.9637 |
π’ |
ESMM | census-income | BCEWithLogitsLoss | income-ctr-AUC: 0.9242 ctcvr-AUC: 0.9122 |
π’ |