Skip to content

πŸ›΄ PyTorch Implementation of classic Recommender System Models.

License

Notifications You must be signed in to change notification settings

nbsps/RS-Models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

49 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Recommender System WITH PyTorch πŸŸ’πŸŸ πŸ”΄

PyTorch Implementation of classic Recommender System Models mainly used for self-learing&communication.

checkout for tensorflow branch

corresponding papers πŸš€ RS_Papers πŸ“–

Matching

Matrix Factorization

Model dataset loss_func metrics state
LFM ml-100k MSELoss MSE: 0.9031 🟒
BiasSVD ml-100k MSELoss MSE: 0.8605 🟒
SVD++ ml-100k MSELoss MSE: 0.8493 🟒

Factorization Machine

Model dataset loss_func metrics state
FM criteo BCELoss AUC: 0.6934 🟒
FFM criteo BCELoss AUC: 0.6729 🟒

Sequential based

Model dataset loss_func metrics state
FPMC ml-100k sBPRLoss Recall@10: 0.0622 🟒
SASRec ml-100k BCEWithLogitsLoss NDCG@10: 0.1801 HR@10: 0.3595 🟒

Knowledge aware

Model dataset loss_func metrics state
RippleNet ml-1m BCELoss AUC: 0.8838 🟒

Graph embedding

DeepWalk Node2vec EGES

Point of Interests

MIND SDM

CF

Model dataset loss_func metrics state
NeuralCF ml-100k MSELoss MSE: 0.3322 🟒

Ranking

FM

Model dataset loss_func metrics state
FNN criteo BCELoss AUC: 0.6787 🟒
DeepFM criteo BCELoss AUC: 0.6854 🟒
NFM criteo BCELoss AUC: 0.6705 🟒
AFM criteo BCELoss AUC: 0.6572 🟒

LR

GBDT+LR

DNN

Model dataset loss_func metrics state
Deep Crossing criteo BCELoss AUC: 0.7210 🟒
PNN criteo BCELoss AUC: 0.6360 🟒
Wide&Deep criteo BCELoss AUC: 0.7074 🟒
DCN criteo BCELoss AUC: 0.7335 🟒
DIN amazon book BCELoss AUC: 0.5988 🟒

DIN: It seems that the feature engineering(negative sampling) of paper used for amazon book seems bad. I try hard but the auc of test cannot reach the 0.811 on amazon book.

Multi tasks

Model dataset loss_func metrics state
MMOE census-income BCEWithLogitsLoss income-AUC: 0.9061 marry-AUC: 0.9637 🟒
ESMM census-income BCEWithLogitsLoss income-ctr-AUC: 0.9242 ctcvr-AUC: 0.9122 🟒

About

πŸ›΄ PyTorch Implementation of classic Recommender System Models.

Topics

Resources

License

Stars

Watchers

Forks

Languages