Skip to content
This repository has been archived by the owner on Oct 31, 2024. It is now read-only.
/ radmap Public archive

Analyse RAD-tags and generate the Genetic Map with GWAS

Notifications You must be signed in to change notification settings

pseudogene/radmap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Warning: This is a pre-release version, we are actively developing this repository. Issues, bugs and features will happen, rise and change.

RAD-tag to Genetic Map

Build Status

We foster the openness, integrity, and reproducibility of scientific research.

Scripts and tools used to develop a pipeline to analyse RAD-tags and generate the Genetic Map with GWAS.

How to use this repository?

This repository host both the scripts and tools developed by this study. Feel free to adapt the scripts and tools, but remember to cite their authors!

To look at our scripts and raw results, browse through this repository. If you want to reproduce our results you will need to clone this repository, build the docker, and the run all the scripts. If you want to use our data for our own research, fork this repository and cite the authors.

Prepare a docker

All required files and tools run in a self-contained docker image.

Clone the repository

git clone --recursive https://github.com/pseudogene/radmap.git
cd radmap

Create a docker

docker build --rm=true -t radmap .

Start the docker

To import and export the results of your analysis, you need to link a folder to the docker. In this example your data will be store in results (current filesystem) which will be seem as been /map from within the docker by using -v <USERFOLDER>:/map.

mkdir results
docker run -i -t --rm -v $(pwd)/results:/map radmap /bin/bash

Data importation

plink classic file PED and MAP are required as well as a pedigree file.

The pedigree file consists of on columns 1-4+. The columns are separated by tabs. The columns 1-4 are individual name, father, mother and sex; the next columns are for extra phenotypes: phenotype_1 to phenotype_n. The phenotypes are not required, but will be helpful for the GWAS analysis.

sample     father  mother  sex  phenotype_1
F1_C2_070  P0_sir  P0_dam  M    30
F1_C2_120  P0_sir  P0_dam  F    1
P0_dam     0       0       F    -
P0_sir     0       0       M    -

From STACKS

If you ran stacks, you can generate the plink files using populations command:

 populations -P dir -b batch_id [-M popmap] (filters) --write_single_snp -k --plink
or
 populations -V vcf -O dir [-M popmap] (filters) --write_single_snp -k --plink
e.g.:
 populations -P ./stakcs/ -M map.pop -b 1 -p 2 -r 0.75 --min_maf 0.01 --write_single_snp -k --plink

This should generate the ped and map file in ./stakcs/batch_1.plink.ped and ./stakcs/batch_1.plink.map.

From dDocent

If you used dDocent, you can convert your Final.recode.vcf with vcftools

vcftools --vcf Final.recode.vcf --plink --maf 0.01 --out plink

LepMap2

See the official documentation at https://sourceforge.net/p/lepmap2/wiki/Home/

Create the lepmap input file (recommended)

plinktomap.pl --ped plink.ped --meta meta_parents.txt --lepmap >input.linkage

Run LepMap2

#Filter dataset
java -cp /usr/local/bin/lepmap2 Filtering data=input.linkage dataTolerance=0.001 MAFLimit=0.01 >input_f.linkage

#Test the best LOD limit (form 0.5 to 15)
for I in $(seq 0.5 0.5 15)
do
  java -cp /usr/local/bin/lepmap2 SeparateChromosomes data=input_f.linkage sizeLimit=10 lodLimit=${I} >/dev/null 2>>lod.log
done

grep "Number of LGs" lod.log >lod.txt
cat lod.txt

#For the best LOD limit (e.g. 5.5)
java -cp /usr/local/bin/lepmap2 SeparateChromosomes data=input_f.linkage sizeLimit=10 lodLimit=5.5 >input.map
java -cp /usr/local/bin/lepmap2 JoinSingles input.map data=input_f.linkage lodLimit=0.5 >input.jsmap

#Calculate a genetic map (see LepMap2 documentation for more details)
java -cp /usr/local/bin/lepmap2 OrderMarkers useKosambi=1 maxDistance=50 map=input.jsmap data=input_f.linkage >lepmap.ordered

LepMap3 (recommended)

See the official documentation at https://sourceforge.net/p/lep-map3/wiki/Home/

Create the lepmap input file (recommended)

plinktomap.pl --ped plink.ped --meta meta_parents.txt --lepmap3 >input.linkage
linkage2post.pl -in input.linkage | java -cp /usr/local/bin/lepmap2 Transpose > input.post

Run LepMap3

#Filter dataset
java -cp /usr/local/bin/lepmap3 Filtering2 data=input.post dataTolerance=0.001 MAFLimit=0.01 >input_f.call

#Test the best LOD limit (form 5 to 30)
for I in $(seq 5 1 30)
do
  java -cp /usr/local/bin/lepmap3 SeparateChromosomes2 data=input_f.call lodLimit="${I}" sizeLimit=10 >/dev/null 2>>lod.log
done

grep "Number of LGs" lod.log >lod.txt
cat lod.txt

#For the best LOD limit (e.g. 8)
  java -cp /usr/local/bin/lepmap3 SeparateChromosomes2 data=input_f.call lodLimit=8 sizeLimit=10 >input.map
  java -cp /usr/local/bin/lepmap3 JoinSingles2All map=input.map data=input_f.call lodLimit=0.5 iterate=1 >input.jsmap

#Calculate a genetic map (see LepMap3 documentation for more details)
  java -cp /usr/local/bin/lepmap3 OrderMarkers2 useKosambi=1 map=input.jsmap data=input_f.call >lepmap.ordered

R/SNPassoc

See the official documentation at https://CRAN.R-project.org/package=SNPassoc

Data preparation

Create the SNPAssoc input file (ALL markers)

plinktomap.pl --plink plink.map --ped plink.ped --meta meta_parents.txt --snpassoc >input.all.snp

Create the SNPAssoc input file (mappable markers: filtered by LepMap2)

plinktomap.pl --plink plink.map --ped plink.ped --meta meta_parents.txt --map input.jsmap --snpassoc >input.mappable.snp

Create the SNPAssoc input file (based on LepMap2/3 Genetic Map, female map) (recommended)

plinktomap.pl --plink plink.map --ped plink.ped --meta meta_parents.txt --map input.jsmap --gmap lepmap.ordered --female --snpassoc >input.snp 2>input.gmap

Run R/SNPassoc

All or mappable markers

library(SNPassoc)
SNP <- read.delim("input.all.snp");
SNPAssoc<-setupSNP(data=SNP,colSNPs=4:length(SNP), sep="/");
SNPAssocSex<-WGassociation(sex~1, data=SNPAssoc, model="codominant")
BonSNPAssocSex<-Bonferroni.sig(SNPAssocSex, model = "codominant", alpha = 0.05, include.all.SNPs=FALSE);
summary(SNPAssocSex)
plot(SNPAssocSex, whole=FALSE, print.label.SNPs = FALSE)

based on LepMap2/3 Genetic Map (recommended)

library(SNPassoc)
SNP <- read.delim("input.snp",header=TRUE);
order <- read.delim("input.gmap");
order$Marker <- paste('X',order$Marker,sep="");  #If Stacks output
#order$Marker<-gsub(":", ".", order$Marker);     #If dDocent output
SNPAssoc<-setupSNP(data=SNP,colSNPs=4:length(SNP), sort=TRUE, info=order,sep="/");
SNPAssocSex<-WGassociation(sex, data=SNPAssoc, model="codominant");
BonSNPAssocSex<-Bonferroni.sig(SNPAssocSex, model = "codominant", alpha = 0.05, include.all.SNPs=FALSE);
summary(SNPAssocSex)
png("AssocSex.png");
plot(SNPAssocSex, whole=FALSE, print.label.SNPs = FALSE, sort.chromosome=TRUE);
dev.off();
write.csv(SNPAssocSex,file="AssocSex.csv");

Generate the summary Genetic map

Create the final genetic map

plinktomap.pl --genetic input.gmap --extra AssocSex.csv >genetic_map.tsv

Create the final genetic map with the marker sequences and locations (Stacks only) (recommended for publication)

plinktomap.pl --genetic input.gmap --extra AssocSex.csv --markers batch_<n>.catalog.tags.tsv --loc >genetic_map.tsv

Issues

If you have any problems with or questions about the scripts, please contact us through a GitHub issue. Any issue related to the scientific results themselves must be done directly with the authors.

Contributing

You are invited to contribute new features, fixes, or updates, large or small; we are always thrilled to receive pull requests, and do our best to process them as fast as we can.

License and distribution

The content of this project itself including the raw data and work are licensed under the Creative Commons Attribution-ShareAlike 4.0 International License, and the source code presented is licensed under the GPLv3 license.

About

Analyse RAD-tags and generate the Genetic Map with GWAS

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages