Skip to content

raphaelsulzer/psdr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

60 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Planar Shape Detection from Point Clouds

build

This repository contains a pipeline for planar shape detection [1, 2] from point clouds. The source code is written in C++ and Python bindings are provided for the main functionality.

📋 Features

  • Reading of point clouds (.ply) or vertex groups (.vg, .npz) as input
  • Planar shape detection based on a robust and efficient region growing algorithm [1] (also in CGAL)
  • Planar shape refinement based on an optimization that seeks the best trade-off between fidelity, completeness and simplicity of the configuration [2]
  • Writing of planar shapes as 2D convex hulls, alpha shapes or minimal rectangles (.ply) or as vertex groups (.vg, .npz, .ply).

🧱 Installation

First, clone this repository and create a new conda environment called psdr. Then, install and test PSDR, its Python bindings and all necessary dependencies.

git clone https://github.com/raphaelsulzer/psdr.git
cd psdr
conda create --name psdr && conda activate psdr
conda install -y -c conda-forge xtensor xtensor-io spdlog cgal anaconda::mpfr yaml-cpp omnia::eigen3
# Windows only: symlink eigen3/Eigen to Eigen
ln -s $CONDA_PREFIX/Library/include/eigen3/Eigen $CONDA_PREFIX/Library/include/Eigen
# Linux/MacOS only: symlink eigen3/Eigen to Eigen
ln -s $CONDA_PREFIX/include/eigen3/Eigen $CONDA_PREFIX/include/Eigen
pip install psdr/.
python -m unittest test.py               

If all tests complete successfully you are ready to use PSDR.

💻 Usage

Python

from pypsdr import psdr

# initialise a planar shape detector                                    
ps = psdr(verbosity=1)              

# load input point cloud                                         
ps.load_points("example/data/anchor/pointcloud.ply")
bb_diagonal = ps.get_bounding_box_diagonal()

# detect planar shapes with fitting tolerance epsilon = 1% of the pointcloud's bounding box diagonal
ps.detect(epsilon=0.01*bb_diagonal,min_inliers=50,knn=10,normal_th=0.8)

# refine planar shape configuration until convergence (i.e. no limit on number of iterations)
ps.refine(max_iterations=-1)
# if the point cloud is very large (e.g. > 2M points) you can also set a time limit
ps.refine(max_seconds=180)

# export planar shapes
ps.save("example/data/anchor/convexes.ply","convex")                  
ps.save("example/data/anchor/rectangles.ply","rectangles")            
ps.save("example/data/anchor/alpha_shapes.ply","alpha")               
ps.save("example/data/anchor/point_groups.ply","pointcloud")               
ps.save("example/data/anchor/point_groups.vg")                              
ps.save("example/data/anchor/point_groups.npz")                              

For more Python examples see the example/python folder.

C++

auto SD = Shape_Detector();
SD.load_points(example/data/anchor/pointcloud.ply);
SD.set_detection_parameters(20,0.02,0.8,10);
auto SC = Shape_Container(&SD);
SC.detect();
SC.refine(10);
SC.save("example/data/gargoyle/groups.npz");
SC.save("example/data/gargoyle/rectangles.ply","rectangle");

For a cmake project that uses PSDR see the example/cpp folder.

📸 Examples

Refinement

Levels of detail

Representations

📖 References

@article{1,
  title={Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation},
  author={Lafarge, Florent and Mallet, Cl{\'e}ment},
  journal={International journal of computer vision},
  volume={99},
  pages={69--85},
  year={2012},
  publisher={Springer}
}
@inproceedings{2,
  title={Finding Good Configurations of Planar Primitives in Unorganized Point Clouds},
  author={Yu, Mulin and Lafarge, Florent},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6367--6376},
  year={2022}
}

Citation

If you use this library in your work, please consider citing the above papers and this repository:

@misc{sulzer2023psdr,
  author = {Sulzer, Raphael and Yu, Mulin and Lafarge, Florent},
  title = {pyPSDR: Planar shape detection from point clouds},
  year = {2023},
  howpublished = {GitHub Repository},
  url = {https://github.com/raphaelsulzer/psdr}
}

About

Planar Shape Detection from Point Clouds

Resources

License

Stars

Watchers

Forks

Packages

No packages published