Skip to content

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

License

Notifications You must be signed in to change notification settings

sowmya-hub/Mask_RCNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mask R-CNN for Object Detection and Segmentation

This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone.

Instance Segmentation Sample

The repository includes:

  • Source code of Mask R-CNN built on FPN and ResNet101.
  • Training code for MS COCO
  • Pre-trained weights for MS COCO
  • Jupyter notebooks to visualize the detection pipeline at every step
  • ParallelModel class for multi-GPU training
  • Evaluation on MS COCO metrics (AP)

Getting Started

  • demo.ipynb Is the easiest way to start. It shows an example of using a model pre-trained on MS COCO to segment objects in your own images. It includes code to run object detection and instance segmentation on arbitrary images.

  • train_shapes.ipynb shows how to train Mask R-CNN on your own dataset. This notebook introduces a toy dataset (Shapes) to demonstrate training on a new dataset.

  • (model.py, utils.py, config.py): These files contain the main Mask RCNN implementation.

  • inspect_data.ipynb. This notebook visualizes the different pre-processing steps to prepare the training data.

  • inspect_model.ipynb This notebook goes in depth into the steps performed to detect and segment objects. It provides visualizations of every step of the pipeline.

  • inspect_weights.ipynb This notebooks inspects the weights of a trained model and looks for anomalies and odd patterns.

Step by Step Detection

To help with debugging and understanding the model, there are 3 notebooks (inspect_data.ipynb, inspect_model.ipynb, inspect_weights.ipynb) that provide a lot of visualizations and allow running the model step by step to inspect the output at each point. Here are a few examples:

1. Anchor sorting and filtering

Visualizes every step of the first stage Region Proposal Network and displays positive and negative anchors along with anchor box refinement.

2. Bounding Box Refinement

This is an example of final detection boxes (dotted lines) and the refinement applied to them (solid lines) in the second stage.

3. Mask Generation

Examples of generated masks. These then get scaled and placed on the image in the right location.

4.Layer activations

Often it's useful to inspect the activations at different layers to look for signs of trouble (all zeros or random noise).

5. Weight Histograms

Another useful debugging tool is to inspect the weight histograms. These are included in the inspect_weights.ipynb notebook.

6. Logging to TensorBoard

TensorBoard is another great debugging and visualization tool. The model is configured to log losses and save weights at the end of every epoch.

6. Composing the different pieces into a final result

Requirements

Python 3.4, TensorFlow 1.3, Keras 2.0.8 and other common packages listed in requirements.txt.

MS COCO Requirements:

To train or test on MS COCO, you'll also need:

Installation

  1. Clone this repository
  2. Install dependencies
    pip3 install -r requirements.txt
  3. Run setup from the repository root directory
    python3 setup.py install
  4. Download pre-trained COCO weights (mask_rcnn_coco.h5) from the releases page.

About

Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%