Skip to content
/ terf Public

Go library for reading/writing TensorFlow TFRecords file format

License

Notifications You must be signed in to change notification settings

ubccr/terf

Repository files navigation

terf - TensorFlow TFRecords file format Reader/Writer

Godoc

terf is a Go library for reading/writing TensorFlow TFRecords files. The goals of this project are two fold:

  1. Read/Write TensorFlow TFRecords files in Go
  2. Provide an easy way to generate example image datasets for use in TensorFlow

With terf you can easily build, inspect, and extract image datasets from the command line without having to install TensorFlow. terf was developed for use with MARCO but should work with most image datasets. The TFRecords file format is based on the imagenet dataset from the inception research model in TensorFlow.

Install

Binaries for your platform can be found here

Usage:

$ ./terf --help

Examples

Create an image dataset

You have a directory of images that have been labeled and you want to build an image dataset that can be used in TensorFlow. First step is to generate a CSV file in the following format:

image_path,image_id,label_id,label_text,label_raw,source

Where image_path is the path to the raw image file, image_id is the unique identifier for an image, label_id is the integer identifier of the normalized label, label_raw is the integer identifier for the raw label, label_text is the normalized label, and source is the source (organization/creator etc) that produced the image. For example:

image_path,image_id,label_id,label_text,label_raw,source
/data/03c3_G6_ImagerDefaults_6.jpg,123,1,Crystals,12,101
/data/X0000056450155200509052032.png,124,0,Clear,15,104

To build the image dataset run the following command:

$ ./terf -d build --input images.csv --output train_directory/ --size 1024

This will convert the image data into a sharded data set of TFRecords files in the train/ output directory:

train_directory/train-00000-of-00024
train_directory/train-00001-of-00024
...
train_directory/train-00023-of-00024

Each TFRecord file will contain ~1024 records. Each record within the TFRecord file is a serialized Example proto. The Example proto contains the following fields:

image/height: integer, image height in pixels
image/width: integer, image width in pixels
image/colorspace: string, specifying the colorspace, always 'RGB'
image/channels: integer, specifying the number of channels, always 3
image/class/label: integer, specifying the index in a normalized classification layer
image/class/raw: integer, specifying the index in the raw (original) classification layer
image/class/source: integer, specifying the index of the source (creator of the image)
image/class/text: string, specifying the human-readable version of the normalized label
image/format: string, specifying the format, always 'JPEG'
image/filename: string containing the basename of the image file
image/id: integer, specifying the unique id for the image
image/encoded: string, containing JPEG encoded image in RGB colorspace

Inspect an image dataset

Generate summary statistics on an image dataset:

$ ./terf -d summary --input train_directory/
INFO[0000] Processing file  path=train_directory/train-00001-of-00001 zlib=false
Total: 10
Label:
        - Clear: 5
        - Precipitate: 4
        - Crystals: 1
Source:
        - 2: 2
        - 3: 6
        - 1: 2
Label ID:
        - 1: 1
        - 0: 5
        - 3: 4
Label Raw:
        - 30: 1
        - 2: 3
        - 8: 1
        - 16: 1
        - 1: 2
        - 14: 2

Extract an image dataset

Extract the raw image data from a dataset:

$ ./terf -d extract --input train_directory -o dump/
INFO[0000] Processing file    path=train_directory/train-00001-of-00001 zlib=false
$ find dump/
dump/
dump/info.csv
dump/Clear
dump/Clear/396612.jpg
dump/Clear/90089.jpg
dump/Clear/192089.jpg
dump/Clear/283709.jpg
dump/Clear/82162.jpg
dump/Precipitate
dump/Precipitate/286612.jpg
dump/Precipitate/421709.jpg
dump/Precipitate/296118.jpg
dump/Precipitate/163507.jpg
dump/Crystals
dump/Crystals/80373.jpg

Go

Parse TFRecords file in Go:

// Open TFRecord file
in, err := os.Open("train-000")
if err != nil {
        log.Fatal(err)
}
defer in.Close()

r := terf.NewReader(in)

count := 0
for {
        // example will be a TensorFlow Example proto
        example, err := r.Next()
        if err == io.EOF {
                break
        } else if err != nil {
                log.Fatal(err)
        }

        // Do something with example

        id := terf.ExampleFeatureInt64(example, "image/id")
        labelID := terf.ExampleFeatureInt64(example, "image/class/label")
        labelText := string(terf.ExampleFeatureBytes(example, "image/class/text"))

        fmt.Printf("Image: %d Label: %s (%d)\n", id, labelText, labelID)
        count++
}

fmt.Printf("Total records: %d\n", count)

License

terf is released under the GPLv3 License. See the LICENSE file.