Skip to content

Key words: Bayesian analysis, Probabilistic programming, Data analysis, Bayesian machine learning... Using Python with its library PyMC3, pandas...

Notifications You must be signed in to change notification settings

vince-CV/probabilistic-machine-learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Uncertainty and Data Science

This practice aims to data analysis and machine learning algorithms. Uncertainty quantification will be done mainly through Bayesian approach and will rely on computational statistics (Monte Carlo). Uncertainty means: getting systems to estimate how much they do not know. The practice will be focused more on practical aspects of uncertainty quantification, so that a new probabilistic programming methods (PyMC3) for modelling uncertainties are used. Topics that will be covered are related to:

Key words: Bayesian analysis, Uncertainty quantification, Probabilistic programming, Data analysis, Modeling, Monte Carlo analysis, Bayesian machine learning, Measurement, Errors...

Created by: Xunzhe Wen

About

Key words: Bayesian analysis, Probabilistic programming, Data analysis, Bayesian machine learning... Using Python with its library PyMC3, pandas...

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published