This repository uses Graph Neural Networks (GNN's) such as Graph Convolution Network (GCN) and Graph Attention Network (GAT) to rank the docked protein complexes in the order of near-nativity to its co-crystalized native complex.
- Python 3.7
- PyTorch 1.1.0 library (Deep learning library)
- numpy
usage: model.py [-h]
[--valid_test_complexes VALID_TEST_COMPLEXES]
[--valid_test_workers VALID_TEST_WORKERS]
[--valid_test_per_epochs VALID_TEST_PER_EPOCHS]
[--epoch_no EPOCH_NO] [--model_path MODEL_PATH]
[--GNN_class GNN_CLASS]
[--top_n TOP_N]
Assessment of docked protein interactions using Graph Neural Networks.
optional arguments:
-h, --help show this help message and exit
--valid_test_complexes VALID_TEST_COMPLEXES
Number of valid and test complexes per mini-batch.
--train_workers TRAIN_WORKERS
Number of pytorch workers to use for training.
--valid_test_workers VALID_TEST_WORKERS
Number of pytorch workers to use for evaluating valid and test sets.
--valid_test_per_epochs VALID_TEST_PER_EPOCHS
Evaluate valid and test sets per epochs.
--epoch_no EPOCH_NO Epoch number to load the pre-trained model from.
--model_path MODEL_PATH
Path to save and load the trained model.
--GNN_class GNN_CLASS
GNN class containing the neural network model to train or test.
--top_n TOP_N The top-n complexes used for evaluating the dataset.