- DarkNet19 - used as a feature extractor in YOLO900.
- DarkNet53 - used as a feature extractor in YOLOv3.
- CSPDarkNet53 - Implementation of Cross Stage Partial Networks in DarkNet53.
- DarkNet53-Elastic - Implementation of ELASTIC with DarkNet53.
- CSPDarkNet53-Elastic - Implementation of CSP and ELASTIC in DarkNet53.
Architecture of DarkNet19 and DarkNet53:
git clone https://github.com/yakhyo/darknet-pytorch.git
cd darknet-pytorch
python main.py path/to/imagenet --batch-size 512 --workers 8
Continue from checkpoint:
python main.py path/to/imagenet --batch-size 512 --workers 8 --resume darknet53.pth.tar
This Repo. | Official | ||||
Model | Acc@1 | Acc@5 | Params | Acc@1 | Acc@5 |
DarkNet19 | 70.5 | 89.7 | 21M | 74.1 | 91.8 |
DarkNet53 | 75.6 | 92.5 | 41M | 77.2 | 93.8 |
CSP-DarkNet53 | 74.3 | 92.2 | 19M | 77.2 | 93.6 |
DarkNet53-Elastic | 70.8 | 90.2 | 24M | ... | ... |
CSPDarkNet53-Elastic | ... | ... | ... | 76.1 | 93.3 |
Weights of DarkNet53
(105th epoch), DarkNet19
(50th epoch), CSPDarkNet53
(80th epoch) and DarkNet53 ELASTIC
(
57th epoch) are available
on here.
Trained on ImageNet
- GPU: Tesla V100
- Input size: 3x224x224
Dataset structure:
βββ IMAGENET
βββ train
βββ [class_id1]/xxx.{jpg,png,jpeg}
βββ [class_id2]/xxy.{jpg,png,jpeg}
βββ [class_id3]/xxz.{jpg,png,jpeg}
....
βββ val
βββ [class_id1]/xxx1.{jpg,png,jpeg}
βββ [class_id2]/xxy2.{jpg,png,jpeg}
βββ [class_id3]/xxz3.{jpg,png,jpeg}
from model import darknet19, darknet53, darknet53e, cspdarknet53
# darknet19
model = darknet19(num_classes=1000, init_weight=True)
# darknet53
model = darknet53(num_classes=1000, init_weight=True)
# darknet53 elastic
model = darknet53e(num_classes=1000, init_weight=True)
# cspdarknet53
model = cspdarknet53(num_classes=1000, init_weight=True)
If you find any issues within this code, feel free to create PR or issue.
The project is licensed under the MIT license.