Detailed report regarding this work can be accessed here: Supervised Learning Benchmarks for Point Goal Navigation in Photo-realistic indoor cluttered
Install Habitat-api and Habitat-sim
Simlink to create the following structure
.
+- vln-instruction-generation
+- config
+- data
| +- datasets
| | +- pointnav
| | +- mp3d
| | +- v1
| | +- test
| | +- train
| | +- val
| +- scene_datasets
| +- mp3d
| +- 1LXtFkjw3qL
| +- 1pXnuDYAj8r
| +- ...
| +- zsNo4HB9uLZ
+- semantic-path.py
Run the following script to make data batches. Change source path and destination path in make_batches.py
python make_batches.py
expert.py #provides various functions to get optimal shortest path for any datapoint
python train.py
- Implement imitation learning pipeline
- Evaluating approach in real-time simulation in habitat-api and tracking various metrics including SPL