Python specific core utilities for bioimage.io resources (in particular models).
To get started we recommend installing bioimageio.core with conda together with a deep
learning framework, e.g. pytorch, and run a few bioimageio
commands to see what
bioimage.core has to offer:
-
install with conda (for more details on conda environments, checkout the conda docs)
conda install -c conda-forge bioimageio.core pytorch
-
test a model
$ bioimageio test powerful-chipmunk ...
(Click to expand output)
βοΈ bioimageio validation passed ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ source https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/powerful-chipmunk/1/files/rdf.yaml format version model 0.4.10 bioimageio.spec 0.5.3post4 bioimageio.core 0.6.8 β location detail βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ βοΈ initialized ModelDescr to describe model 0.4.10 βοΈ bioimageio.spec format validation model 0.4.10 π context.perform_io_checks True π context.root https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/powerful-chipmunk/1/files π context.known_files.weights.pt 3bd9c518c8473f1e35abb7624f82f3aa92f1015e66fb1f6a9d08444e1f2f5698 π context.known_files.weights-torchscript.pt 4e568fd81c0ffa06ce13061327c3f673e1bac808891135badd3b0fcdacee086b π context.warning_level error βοΈ Reproduce test outputs from test inputs βοΈ Reproduce test outputs from test inputs
or
$ bioimageio test impartial-shrimp ...
(Click to expand output)
βοΈ bioimageio validation passed βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ source https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/impartial-shrimp/1.1/files/rdf.yaml format version model 0.5.3 bioimageio.spec 0.5.3.2 bioimageio.core 0.6.9 β location detail ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ βοΈ initialized ModelDescr to describe model 0.5.3 βοΈ bioimageio.spec format validation model 0.5.3 π context.perform_io_checks False π context.warning_level error βοΈ Reproduce test outputs from test inputs (pytorch_state_dict) βοΈ Run pytorch_state_dict inference for inputs with batch_size: 1 and size parameter n: 0 βοΈ Run pytorch_state_dict inference for inputs with batch_size: 2 and size parameter n: 0 βοΈ Run pytorch_state_dict inference for inputs with batch_size: 1 and size parameter n: 1 βοΈ Run pytorch_state_dict inference for inputs with batch_size: 2 and size parameter n: 1 βοΈ Run pytorch_state_dict inference for inputs with batch_size: 1 and size parameter n: 2 βοΈ Run pytorch_state_dict inference for inputs with batch_size: 2 and size parameter n: 2 βοΈ Reproduce test outputs from test inputs (torchscript) βοΈ Run torchscript inference for inputs with batch_size: 1 and size parameter n: 0 βοΈ Run torchscript inference for inputs with batch_size: 2 and size parameter n: 0 βοΈ Run torchscript inference for inputs with batch_size: 1 and size parameter n: 1 βοΈ Run torchscript inference for inputs with batch_size: 2 and size parameter n: 1 βοΈ Run torchscript inference for inputs with batch_size: 1 and size parameter n: 2 βοΈ Run torchscript inference for inputs with batch_size: 2 and size parameter n: 2
-
run prediction on your data
-
display the
bioimageio-predict
command help to get an overview:$ bioimageio predict --help ...
(Click to expand output)
usage: bioimageio predict [-h] [--inputs Sequence[Union[str,Annotated[Tuple[str,...],MinLenmin_length=1]]]] [--outputs {str,Tuple[str,...]}] [--overwrite bool] [--blockwise bool] [--stats Path] [--preview bool] [--weight_format {typing.Literal['keras_hdf5','onnx','pytorch_state_dict','tensorflow_js','tensorflow_saved_model_bundle','torchscript'],any}] [--example bool] SOURCE bioimageio-predict - Run inference on your data with a bioimage.io model. positional arguments: SOURCE Url/path to a bioimageio.yaml/rdf.yaml file or a bioimage.io resource identifier, e.g. 'affable-shark' optional arguments: -h, --help show this help message and exit --inputs Sequence[Union[str,Annotated[Tuple[str,...],MinLen(min_length=1)]]] Model input sample paths (for each input tensor) The input paths are expected to have shape... - (n_samples,) or (n_samples,1) for models expecting a single input tensor - (n_samples,) containing the substring '{input_id}', or - (n_samples, n_model_inputs) to provide each input tensor path explicitly. All substrings that are replaced by metadata from the model description: - '{model_id}' - '{input_id}' Example inputs to process sample 'a' and 'b' for a model expecting a 'raw' and a 'mask' input tensor: --inputs="[["a_raw.tif","a_mask.tif"],["b_raw.tif","b_mask.tif"]]" (Note that JSON double quotes need to be escaped.) Alternatively a `bioimageio-cli.yaml` (or `bioimageio-cli.json`) file may provide the arguments, e.g.: ```yaml inputs: - [a_raw.tif, a_mask.tif] - [b_raw.tif, b_mask.tif] ``` `.npy` and any file extension supported by imageio are supported. Aavailable formats are listed at https://imageio.readthedocs.io/en/stable/formats/index.html#all-formats. Some formats have additional dependencies. β (default: ('{input_id}/001.tif',)) --outputs {str,Tuple[str,...]} Model output path pattern (per output tensor) All substrings that are replaced: - '{model_id}' (from model description) - '{output_id}' (from model description) - '{sample_id}' (extracted from input paths) β (default: outputs_{model_id}/{output_id}/{sample_id}.tif) --overwrite bool allow overwriting existing output files (default: False) --blockwise bool process inputs blockwise (default: False) --stats Path path to dataset statistics (will be written if it does not exist, but the model requires statistical dataset measures) β (default: dataset_statistics.json) --preview bool preview which files would be processed and what outputs would be generated. (default: False) --weight_format {typing.Literal['keras_hdf5','onnx','pytorch_state_dict','tensorflow_js','tensorflow_saved_model_bundle','torchscript'],any} The weight format to use. (default: any) --example bool generate and run an example 1. downloads example model inputs 2. creates a `{model_id}_example` folder 3. writes input arguments to `{model_id}_example/bioimageio-cli.yaml` 4. executes a preview dry-run 5. executes prediction with example input β (default: False)
-
create an example and run prediction locally!
$ bioimageio predict impartial-shrimp --example=True ...
(Click to expand output)
π bioimageio prediction preview structure: {'{sample_id}': {'inputs': {'{input_id}': '<input path>'}, 'outputs': {'{output_id}': '<output path>'}}} π bioimageio prediction preview output: {'1': {'inputs': {'input0': 'impartial-shrimp_example/input0/001.tif'}, 'outputs': {'output0': 'impartial-shrimp_example/outputs/output0/1.tif'}}} predict with impartial-shrimp: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββ| 1/1 [00:21<00:00, 21.76s/sample] π Sucessfully ran example prediction! To predict the example input using the CLI example config file impartial-shrimp_example\bioimageio-cli.yaml, execute `bioimageio predict` from impartial-shrimp_example: $ cd impartial-shrimp_example $ bioimageio predict "impartial-shrimp" Alternatively run the following command in the current workind directory, not the example folder: $ bioimageio predict --preview=False --overwrite=True --stats="impartial-shrimp_example/dataset_statistics.json" --inputs="[[\"impartial-shrimp_example/input0/001.tif\"]]" --outputs="impartial-shrimp_example/outputs/{output_id}/{sample_id}.tif" "impartial-shrimp" (note that a local 'bioimageio-cli.json' or 'bioimageio-cli.yaml' may interfere with this)
The bioimageio.core
package can be installed from conda-forge via
mamba install -c conda-forge bioimageio.core
If you do not install any additional deep learning libraries, you will only be able to use general convenience functionality, but not any functionality for model prediction. To install additional deep learning libraries use:
-
Pytorch/Torchscript:
CPU installation (if you don't have an nvidia graphics card):
mamba install -c pytorch -c conda-forge bioimageio.core pytorch torchvision cpuonly
GPU installation (for cuda 11.6, please choose the appropriate cuda version for your system):
mamba install -c pytorch -c nvidia -c conda-forge bioimageio.core pytorch torchvision pytorch-cuda=11.8
Note that the pytorch installation instructions may change in the future. For the latest instructions please refer to pytorch.org.
-
Tensorflow
Currently only CPU version supported
mamba install -c conda-forge bioimageio.core tensorflow
-
ONNXRuntime
Currently only cpu version supported
mamba install -c conda-forge bioimageio.core onnxruntime
The package is also available via pip
(e.g. with recommended extras onnx
and pytorch
):
pip install "bioimageio.core[onnx,pytorch]"
To set up a development conda environment run the following commands:
mamba env create -f dev/env.yaml
mamba activate core
pip install -e . --no-deps
There are different environment files available that only install tensorflow or pytorch as dependencies.
bioimageio.core
installs a command line interface (CLI) for testing models and other functionality.
You can list all the available commands via:
bioimageio
For convenience the command line options (not arguments) may be given in a bioimageio-cli.json
or bioimageio-cli.yaml
file, e.g.:
# bioimageio-cli.yaml
inputs: inputs/*_{tensor_id}.h5
outputs: outputs_{model_id}/{sample_id}_{tensor_id}.h5
overwrite: true
blockwise: true
stats: inputs/dataset_statistics.json
bioimageio.core
is a python package that implements prediction with bioimageio models
including standardized pre- and postprocessing operations.
These models are described by---and can be loaded with---the bioimageio.spec package.
In addition bioimageio.core provides functionality to convert model weight formats.
To get an overview of this functionality, check out these example notebooks:
and the developer documentation.
bioimageio.spec
and bioimageio.core
use loguru for logging, hence the logging level
may be controlled with the LOGURU_LEVEL
environment variable.
The model specification and its validation tools can be found at https://github.com/bioimage-io/spec-bioimage-io.
- improve bioimageio command line interface (details in #157)
- add
predict
command - package command input
path
is now required
- add
- testing model inference will now check all weight formats (previously only the first one for which model adapter creation succeeded had been checked)
- fix predict with blocking (Thanks @thodkatz)
predict()
argumentinputs
may be sample
- add aliases to match previous API more closely
- improve adapter error messages
- add
bioimageio validate-format
command - improve error messages and display of command results
- Fix #386
- (in model inference testing) stop assuming model inputs are tileable
- Fix #384
- add compatibility with new bioimageio.spec 0.5 (0.5.2post1)
- improve interfaces